Topic: Integration by parts

Background:

$$\int u dv = uv - \int v du$$

Choose u, dv such that $\int dv$ and $\int v du$ are easier than the original $\int u dv$

In some cases $\int v du$ is not readily computable although it is simpler than (or similar to) the original integral $\int u dv$. In such cases, applying integration by parts to $\int v du$ often does the trick. Examples (3) and (6) below illustrate this idea.

Illustrative Examples:

(1) Find the following indefinite integral .

$$\int x \sin(x) dx$$

Solution:

Choose $u = x, dv = \sin(x)dx$. Thus, $v = \int \sin(x)dx = -\cos(x), du = dx$.

Hence,

$$\int x \sin(x) dx = x(-\cos(x)) - \int -\cos(x) dx$$
$$= -x \cos(x) + \sin(x) + C$$

(2) Find the following indefinite integral.

$$\int xe^x dx$$

Solution:

Choose $u = x, dv = e^x dx$. Thus, $v = \int e^x dx = e^x, du = dx$.

Hence,

$$\int xe^x dx = xe^x - \int e^x dx$$
$$= xe^x - e^x + C$$

(3) Find the following indefinite integral.

$$\int x^2 e^x dx$$

Solution:

Choose $u = x^2, dv = e^x dx$. Thus, $v = \int e^x dx = e^x, du = 2x dx$.

Hence,

$$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx$$

$$= x^2 e^x - 2(x e^x - e^x) + C \text{ (using the result in Problem (2))}$$

$$= x^2 e^x - 2x e^x + 2e^x + C$$

(4) Compute the following definite integral.

$$\int_0^1 x e^{-x} dx$$

Solution:

We first compute the indefinite integral.

Choose $u = x, dv = e^{-x}dx$. Thus, $v = \int e^{-x}dx = -e^{-x}, du = dx$.

Hence,

$$\int xe^{-x}dx = -xe^{-x} - \int -e^{-x}dx$$
$$= -xe^{-x} - e^{-x} + C$$

Hence,

$$\int_0^1 xe^{-x} dx = -xe^{-x} - e^{-x}|_0^1$$

$$= (-e^{-1} - e^{-1}) - (0 - e^0)$$

$$= -\frac{2}{e} + 1$$

(5) Find the following indefinite integral .

$$\int \ln(x) dx$$

Solution:

Choose $u = \ln(x), dv = dx$. Thus, $v = \int dx = x, du = \frac{1}{x}$.

Hence,

$$\int \ln(x)dx = x \ln(x) - \int x \frac{1}{x} dx$$
$$= x \ln(x) + x + C$$

(6) Find the following indefinite integral.

$$\int e^x \cos(x) dx$$

Solution:

Choose $u = e^x$, $dv = \cos(x)dx$. Thus, $v = \int \cos(x)dx = \sin(x)$, $du = e^x dx$.

Hence,

$$\int e^x \cos(x) dx = e^x \sin(x) - \int e^x \sin(x) dx \qquad (1)$$

Let us apply integration by parts to $\int e^x \sin(x) dx$.

Choose $u = e^x$, $dv = \sin(x)dx$. Thus, $v = \int \sin(x)dx = -\cos(x)$, $du = e^x dx$

Hence,

$$\int e^x \sin(x) dx = -e^x \cos(x) - \int -e^x \cos(x) dx$$
$$= -e^x \cos(x) + \int e^x \cos(x) dx \qquad (2)$$

Substituting equation (2) into (1) we have,

$$\int e^x \cos(x) dx = e^x \sin(x) - (-e^x \cos(x) + \int e^x \cos(x) dx)$$
$$= e^x \sin(x) + e^x \cos(x) - \int e^x \cos(x) dx$$

Now solving for $\int e^x \cos(x) dx$ we have,

$$\int e^x \cos(x) dx = \frac{e^x \sin(x) + e^x \cos(x)}{2}$$

a ..

Cautions:

$$\int f(x)g(x)dx \neq (\int f(x)dx)(\int g(x)dx)$$

Example:

$$\int x \sin(x) dx \neq (\int x dx)(\int \sin(x) dx) = -\frac{x^2 \cos(x)}{2}$$

Illustrative example (1) shows the correct way to compute $\int x \sin(x) dx$.

In illustrative example (1) we obtained

$$\int x\sin(x)dx = -x\cos(x) + \sin(x) + C$$

$$\int \left(\frac{f(x)}{g(x)}\right) dx \neq \frac{\int f(x)dx}{\int g(x)dx}$$

Example:

$$\int \frac{x}{e^x} dx \neq \frac{\int x dx}{\int e^x dx} = \frac{1}{e^x}$$

Illustrative example (4) shows the correct way to compute $\int \frac{x}{e^x} dx$.

In illustrative example (4) we obtained

$$\int \frac{x}{e^x} dx = -xe^{-x} - e^{-x} + C$$