Skolem, Langford, Extended, and Near-Skolem Sequences, Oh My!

Heather Jordon
Illinois State University

3 November 2011
DISC MATH
Skolem Sequences

Definition
A Skolem sequence S of order t is a sequence $S = s_1 s_2 ... s_{2t}$ of $2t$ integers such that

(S1) for every $\ell \in \{1, 2, ..., t\}$, there exists unique $s_i, s_j \in S$ such that $s_i = s_j = \ell$, and

(S2) if $s_i = s_j = \ell$ with $i < j$, then $j - i = \ell$.

Example
A Skolem sequence of order $t = 5$:

5242354311
A **Skolem sequence** of order \(t \)

- can be written as a **collection of ordered pairs**

\[
\{(a_i, b_i) \mid 1 \leq i \leq t, \ b_i - a_i = i\}
\]

with

\[
\bigcup_{i=1}^{t} \{a_i, b_i\} = \{1,2,\ldots,2t\}
\]

- gives a **partition** of the set \(\{1, 2, \ldots, 3t\} \) into triples

\((a_i, b_i, c_i)\) such that \(a_i + b_i = c_i \) for each \(i = 1, 2, \ldots, t \).

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Ordered Pairs</th>
<th>Partition of ({1, 2, \ldots, 15})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5242354311</td>
<td>{9, 10}</td>
<td>1 + 14 = 15</td>
</tr>
<tr>
<td>6789...</td>
<td>{2, 4}</td>
<td>2 + 7 = 9</td>
</tr>
<tr>
<td></td>
<td>{5, 8}</td>
<td>3 + 10 = 13</td>
</tr>
<tr>
<td></td>
<td>{3, 7}</td>
<td>4 + 8 = 12</td>
</tr>
<tr>
<td></td>
<td>{1, 6}</td>
<td>5 + 6 = 11</td>
</tr>
</tbody>
</table>
Theorem (Skolem, 1957) A Skolem sequence of order \(t \) exists if and only if \(t \equiv 0, 1 \pmod{4} \).

Necessity

A Skolem sequence of order \(t \)

\[\Rightarrow \text{partition of } \{1, 2, \ldots, 3t\} \text{ into triples } (a_i, b_i, c_i) \text{ such that} \]

\[a_i + b_i = c_i \text{ for each } i = 1, 2, \ldots, t \]

\[a_i + b_i - c_i = 0 \]

\[\Rightarrow \text{each triple must have an even number of odds} \]

\[\Rightarrow \{1, 2, \ldots, 3t\} \text{ must have an even number of odds} \]

\[\Rightarrow 3t \equiv 3, 4 \pmod{4} \Rightarrow t \equiv 0, 1 \pmod{4} \]
What about \(t \equiv 2, 3 \pmod{4} \)?

Definition
A hooked Skolem sequence \(HS \) of order \(t \) is a sequence \(HS = s_1 s_2 ... s_{2t+1} \) of \(2t + 1 \) integers such that

(S1) for every \(l \in \{1, 2, ..., t\} \), there exists unique \(s_i, s_j \in HS \) such that \(s_i = s_j = l \),

(S2) if \(s_i = s_j = l \) with \(i < j \), then \(j - i = l \), and

(S3) \(s_{2t} = ______ \)

Example
A hooked Skolem sequence of order \(t = 6 \):

\[64511465232_3 \]
A **hooked Skolem sequence** of order \(t \)

- can be written as a **collection of ordered pairs** \(\{(a_i, b_i) \mid 1 \leq i \leq t, b_i - a_i = i\} \) with
 \[
 \bigcup_{i=1}^{t}\{a_i, b_i\} = \{1, 2, \ldots, 2t - 1, 2t + 1\}
 \]

- gives a **partition** of the set \(\{1, 2, \ldots, 3t - 1, 3t + 1\} \) into triples \((a_i, b_i, c_i)\) such that \(a_i + b_i = c_i \) for each \(i = 1, 2, \ldots, t \).

Theorem (O’Keefe, 1961) A hooked Skolem sequence of order \(t \) exists if and only if \(t \equiv 2, 3 \pmod{4} \).
Skolem sequences and their many generalizations have applications in numerous areas:

- triple systems, cyclically decomposing complete graphs into 3-cycles
- balanced ternary designs
- labelings of graphs, including labeling graphs to enhance testing the reliability of a communication network
- generating missile guidance codes resistant to random interference
- design of statistical models, such as a balanced sampling plan excluding contiguous units and a balanced sampling plan avoiding the selection of adjacent units
- Wythoff pairs
- construction of binary sequences with controllable complexity
- testing new parallel processing algorithms

A decomposition of a graph G is a partition of its edge set into subsets.
Triple systems are decompositions of the complete graph \(K_n \) into 3-cycles.

\[K_7 \text{ into 3-cycles.} \]
Necessary Conditions for Triple Systems

If a decomposition of K_n into 3-cycles exists, then

- $3 \leq n$,
- n is odd, and
- $3 \mid n(n - 1)/2$

$$3k = \frac{n(n-1)}{2} \quad \text{or} \quad 6 \mid n(n - 1) \quad \text{or} \quad n = 6t + 1, 6t + 3$$
Circulants

Let \(n > 1 \) and let \(L \subseteq \{1, 2, ..., \lfloor n/2 \rfloor \} \).

The **circulant graph** \(\langle L \rangle_n \) denotes that graph with vertex set \(\mathbb{Z}_n \) (the integers modulo \(n \)) and edge set
\[
\{ \{i, i + k\} \mid k \in L, i \in \mathbb{Z}_n \}.
\]

\[
\langle\{1, 3\}\rangle_{12}:
\]

\[
K_n = \langle\{1, 2, ..., \lfloor n/2 \rfloor\}\rangle_n
\]
Partition of \{1, 2, \ldots, 15\}

- 1 + 14 = 15
- 2 + 7 = 9
- 3 + 10 = 13
- 4 + 8 = 12
- 5 + 6 = 11

We have a decomposition of K_{31} into 3-cycles!

$\langle\{1, 2, \ldots, 15\}\rangle_n$ into $5n$ 3-cycles
Existence of Triple Systems, 6t + 1 Case

Corollary For \(t \geq 1 \), \(K_{6t+1} \) decomposes into 3-cycles.

Proof Let \(t \geq 1 \).
Suppose first \(t \equiv 0, 1 \pmod{4} \). Then, there exists a Skolem sequence of order \(t \), giving a partition of \(\{1, 2, \ldots, 3t\} \) into \(t \) triples. These \(t \) triples give rise to a decomposition of \(K_{6t+1} = \langle\{1, 2, \ldots, 3t\}\rangle_{6t+1} \) into 3-cycles.

Now suppose \(t \equiv 2, 3 \pmod{4} \). Then, there exists a hooked Skolem sequence of order \(t \), giving a partition of \(\{1, 2, \ldots, 3t - 1, 3t + 1\} \) into \(t \) triples. Since
\[
\langle\{1, 2, \ldots, 3t\}\rangle_{6t+1} = \langle\{1, 2, \ldots, 3t - 1, 3t + 1\}\rangle_{6t+1},
\]
these \(t \) triples give rise to a decomposition of \(K_{6t+1} = \langle\{1, 2, \ldots, 3t\}\rangle_{6t+1} \) into 3-cycles.
Extended Skolem Sequences

Definition

A k-extended Skolem sequence ES_k of order t is a sequence $ES_k = s_1 \ s_2 \ ... \ s_{2t+1}$ of $2t + 1$ integers such that

(E1) for every $\ell \in \{1, 2, ..., t\}$, there exists unique $s_i, s_j \in ES_k$ such that $s_i = s_j = \ell$,

(E2) if $s_i = s_j = \ell$ with $i < j$, then $j - i = \ell$, and

(E3) $s_k =$ __

Example

A 5-extended Skolem sequence of order $t = 4$:

$$2423_{4311}$$

Note: A $(2t)$-extended Skolem sequence is a hooked Skolem sequence.
What kind of partitions do extended Skolem sequences provide?

A k-extended Skolem sequence of order t provides a partition of $\{1, 2, \ldots, 3t + 1\} \setminus \{t + k\}$ into triples (a_i, b_i, c_i) such that $a_i + b_i = c_i$ for $i = 1, 2, \ldots, t$.

Example

5-extended Skolem sequence of order $t = 4$:

24234311

$5678 \ldots$

$1 + 12 = 13$

$2 + 5 = 7$

$3 + 8 = 11$

$4 + 6 = 10$

$\{1, 2, \ldots, 13\} \setminus \{9\}$
5-extension Skolem, order 4

Partition of \(\{1, 2, \ldots, 13\} \setminus \{9\} \)

1 + 12 = 13
2 + 5 = 7
3 + 8 = 11
4 + 6 = 10

\(\langle \{1, 2, \ldots, 13\} \setminus \{9\}\rangle_n \)

into 4n 3-cycles

When \(n = 27 \),
we have \(K_{27} = \langle \{1, 2, \ldots, 13\}\rangle_{27} \) into 3-cycles.
Hooked Extended Skolem Sequences

Definition
A hooked \(k \)-extended Skolem sequence \(HES_k \) of order \(t \) is a sequence \(HES_k = s_1 s_2 \ldots s_{2t+2} \) of \(2t + 2 \) integers such that

1. **(E1)** for every \(\ell \in \{1, 2, \ldots, t\} \), there exists unique \(s_i, s_j \in HES_k \) such that \(s_i = s_j = \ell \),
2. **(E2)** if \(s_i = s_j = \ell \) with \(i < j \), then \(j - i = \ell \), and
3. **(E3)** \(s_k = _ \)
4. **(E4)** \(s_{2t+1} = _ \)

Example
A hooked 4-extended Skolem sequence of order \(t = 4 \):

\[411_4232_3 \]
Hooked k-extended Skolem sequences

A hooked k-extended Skolem sequence of order t provides a partition of $\{1, 2, \ldots, 3t + 2\} \setminus \{t + k, 3t + 1\}$ into triples (a_i, b_i, c_i) such that $a_i + b_i = c_i$ for $i = 1, 2, \ldots, t$.

Example

hooked 4-extended Skolem sequence of order $t = 4$:

$$411_4232_3$$

1 + 6 = 7
2 + 10 = 12
3 + 11 = 14
4 + 5 = 9

$\{1, 2, \ldots, 14\} \setminus \{8, 13\}$
Theorem (Baker, 1995; Linek and Shalaby, 2008)

For positive integers k and t with $k \leq 2t + 1$, a k-extended Skolem sequence of order t exists if and only if

- k is odd and $t \equiv 0, 1 \pmod{4}$
- or

- k is even and $t \equiv 2, 3 \pmod{4}$.

For positive integers k and t with $k < 2t + 1$, a hooked k-extended Skolem sequence of order t exists if and only if

- k is even and $t \equiv 0, 1 \pmod{4}$
- or

- k is odd and $t \equiv 2, 3 \pmod{4}$.
Existence of Triple Systems, $6t + 3$ Case

Corollary For $t \geq 1$, K_{6t+3} decomposes into 3-cycles.

Proof Let $t \geq 1$. Note $K_{6t+3} = \langle \{1, 2, \ldots, 3t + 1\}\rangle_{6t+3}$. Suppose first $t \equiv 0, 3 \pmod{4}$. Then, there exists a $(t + 1)$-extended Skolem sequence of order t, giving a partition of $\{1, 2, \ldots, 3t + 1\}\backslash\{2t + 1\}$ into t triples. These t triples give rise to a decomposition of $\langle \{1, 2, \ldots, 3t + 1\}\backslash\{2t + 1\}\rangle_{6t+3}$ into 3-cycles. Since $\langle \{2t + 1\}\rangle_{6t+3}$ is a union of 3-cycles, we have a decomposition of K_{6t+3} into 3-cycles.

Now suppose $t \equiv 1, 2 \pmod{4}$. Then, there exists a hooked $(t + 1)$-extended Skolem sequence of order t. We proceed as in the $t \equiv 0, 3 \pmod{4}$ case noting that $\langle \{1, 2, \ldots, 3t + 1\}\rangle_{6t+3} = \langle \{1, 2, \ldots, 3t, 3t + 2\}\rangle_{6t+3}$.
Near Skolem Sequences

Definition
A near Skolem sequence NS_k of order t and defect k is a sequence $\text{NS}_k = s_1 \ s_2 \ldots \ s_{2t-2}$ of $2t - 2$ integers such that

$(N1)$ for every $\ell \in \{1, 2, \ldots, t\}\setminus\{k\}$, there exists unique $s_i, s_j \in \text{NS}_k$ such that $s_i = s_j = \ell$,

$(N2)$ if $s_i = s_j = \ell$ with $i < j$, then $j - i = \ell$, and

Example
A near Skolem sequence of order $t = 5$ and defect $k = 3$: 42524115

Note: A near Skolem sequence of order t and defect t is a Skolem sequence of order $t - 1$.
What kind of partitions do near Skolem sequences provide?

A near Skolem sequence of order t and defect k provides a partition of $\{1, 2, \ldots, 3t - 2\} \setminus \{k\}$ into triples (a_i, b_i, c_i) such that $a_i + b_i = c_i$ for $i = 1, 2, \ldots, t$.

Example

near Skolem sequence of order $t = 5$ and defect $k = 3$:

42524115

$6 \ 7 \ 8 \ 9 \ \ldots$

$1 + 11 = 12$

$2 + 7 = 9$

$4 + 6 = 10$

$5 + 8 = 13$

$\{1, 2, \ldots, 13\} \setminus \{3\}$
Near Skolem, order 5, defect 3

Partition of \(\{1, 2, \ldots, 13\}\backslash\{3\}\)

\[
\begin{align*}
1 + 11 &= 12 \\
2 + 7 &= 9 \\
4 + 6 &= 10 \\
5 + 8 &= 13
\end{align*}
\]

\(\langle\{1, 2, \ldots, 13\}\backslash\{3\}\rangle_n\)

into \(4n\) 3-cycles

When \(n = 27\),

we have \(K_{27}\) into

108 3-cycles and

3 9-cycles.
Hooked Near Skolem Sequences

Definition
A hooked near Skolem sequence HNS_k of order t and defect k is a sequence $HNS_k = s_1 s_2 ... s_{2t-1}$ of $2t - 1$ integers such that

(N1) for every $\ell \in \{1, 2, ..., t\}\backslash\{k\}$, there exists unique $s_i, s_j \in HNS_k$ such that $s_i = s_j = \ell$,

(N2) if $s_i = s_j = \ell$ with $i < j$, then $j - i = \ell$, and

(N3) $s_{2t-2} =$ ___

Example
A hooked near Skolem sequence of order $t = 5$, defect $k = 2$: 4511435_3
Hooked Near Skolem sequences

A hooked near Skolem sequence of order t and defect k provides a partition of $\{1, 2, \ldots, 3t - 1\} \setminus \{k, 3t - 2\}$ into triples (a_i, b_i, c_i) such that $a_i + b_i = c_i$ for $i = 1, 2, \ldots, t$.

Example

hooked near Skolem sequence of order $t = 5$, defect $k = 2$:

$$4511435 _3$$

$$1 + 8 = 9$$
$$3 + 11 = 14$$
$$4 + 6 = 10$$
$$5 + 7 = 12$$

$$\{1, 2, \ldots, 14\} \setminus \{2, 13\}$$
Let k and t be positive integers with $k \leq t$. A near Skolem sequence of order t and defect k exists if and only if

k is odd and $t \equiv 0, 1 \pmod{4}$

or

k is even and $t \equiv 2, 3 \pmod{4}$.

A hooked near Skolem sequence of order t and defect k exists if and only if

k is even and $t \equiv 0, 1 \pmod{4}$

or

k is odd and $t \equiv 2, 3 \pmod{4}$.
Langford Sequences

Definition
A Langford sequence \(L \) of order \(t \) and defect \(d \) is a sequence \(L = s_1 \ s_2 \ldots \ s_{2t} \) of \(2t \) integers such that

\[(L1) \quad \text{for every } \ell \in \{d, \ d + 1, \ d + 2, \ldots, \ d + t - 1\}, \text{ there exists unique } s_i, \ s_j \in L \text{ such that } s_i = s_j = \ell, \text{ and} \]

\[(L2) \quad \text{if } s_i = s_j = \ell \text{ with } i < j, \text{ then } j - i = \ell. \]

Example
A Langford sequence of order \(t = 5 \) and defect \(d = 3 \):

\[7536435746 \]

Note: A Langford sequence of order \(t \) and defect \(d = 1 \) is a Skolem sequence of order \(t \).
Hooked Langford Sequences

Definition
A hooked Langford sequence HL of order t and defect d is a sequence $HL = s_1 s_2 \ldots s_{2t+1}$ of $2t + 1$ integers such that

(L1) for every $\ell \in \{d, d + 1, d + 2, \ldots, d + t - 1\}$, there exists unique $s_i, s_j \in L$ such that $s_i = s_j = \ell$,
(L2) if $s_i = s_j = \ell$ with $i < j$, then $j - i = \ell$, and
(L3) $s_{2t} = __$

Example
A hooked Langford sequence of order $t = 5$ and defect $d = 2$:

```
345364252_6
```
Partitions from (Hooked) Langford sequences

A (hooked) Langford sequence of order t and defect d provides a partition of $\{d, d + 1, d + 2, \ldots, d + 3t - 1\}$ into triples (a_i, b_i, c_i) such that $a_i + b_i = c_i$ for $i = 1, 2, \ldots, t$.

Example

Langford sequence of order $t = 5$ and defect $d = 3$:

```
7536435746
8 9 10 ...
3 + 10 = 13
4 + 12 = 16
5 + 9 = 14
6 + 11 = 17
7 + 8 = 15
```

{3, 4, \ldots, 17}

Hooked Langford sequence of order $t = 5$ and defect $d = 2$:

```
345364252_6
2 + 13 = 15
3 + 7 = 10
4 + 8 = 12
5 + 9 = 14
6 + 11 = 17
```

{2, 3, \ldots, 15, 17}
Partition of $\{3, 4, ..., 17\}$

- $3 + 10 = 13$
- $4 + 12 = 16$
- $5 + 9 = 14$
- $6 + 11 = 17$
- $7 + 8 = 15$

$\langle\{3, 4, ..., 17\}\rangle_n$ into $5n$ 3-cycles, $n \geq 35$
Theorem (Simpson, 1983)
A Langford sequence of order t and defect d exists if and only if
1. $t \geq 2d - 1$, and
2. $t \equiv 0, 1 \pmod{4}$ and d is odd, or $t \equiv 0, 3 \pmod{4}$ and d is even.

A hooked Langford sequence of order t and defect d exists if and only if
1. $t(t - 2d + 1) + 2 \geq 0$, and
2. $t \equiv 2, 3 \pmod{4}$ and d is odd, or $t \equiv 1, 2 \pmod{4}$ and d is even.
There are other interesting generalizations of Skolem sequences: \(k \)-extended, Langford and near-Skolem are just a few.

All of these ideas can be extended to \(m \)-tuples and integer partitioning.

Definition
An \(m \)-tuple \((d_1, d_2, \ldots, d_m)\) such that
\[
d_1 + d_2 + \ldots + d_m = 0
\]
is a **Skolem-type** \(m \)-tuple.

A set of \(t \) Skolem-type \(m \)-tuples whose entries, in absolute value, are \(\{1, 2, \ldots, mt\} \) is a **Skolem-type** \(m \)-tuple difference set of order \(t \).
Examples of Skolem-type m-tuple difference sets

Skolem sequences provide Skolem-type 3-tuple difference sets:

<table>
<thead>
<tr>
<th>Skolem sequence of order 5</th>
<th>Partition of ${1, 2, ..., 15}$</th>
<th>Skolem-type 3-tuple difference set of order 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5242354311</td>
<td>$1 + 14 = 15$</td>
<td>$1 + 14 - 15 = 0$</td>
</tr>
<tr>
<td></td>
<td>$2 + 7 = 9$</td>
<td>$2 + 7 - 9 = 0$</td>
</tr>
<tr>
<td></td>
<td>$3 + 10 = 13$</td>
<td>$3 + 10 - 13 = 0$</td>
</tr>
<tr>
<td></td>
<td>$4 + 8 = 12$</td>
<td>$4 + 8 - 12 = 0$</td>
</tr>
<tr>
<td></td>
<td>$5 + 6 = 11$</td>
<td>$5 + 6 - 11 = 0$</td>
</tr>
</tbody>
</table>

Skolem-type 5-tuple difference set of order 3

<table>
<thead>
<tr>
<th></th>
<th>Partition of ${1, 2, ..., 15}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - 2 + 3 + 9 - 11 = 0$</td>
<td></td>
</tr>
<tr>
<td>$4 - 8 + 6 + 13 - 15 = 0$</td>
<td></td>
</tr>
<tr>
<td>$5 - 10 + 7 + 12 - 14 = 0$</td>
<td></td>
</tr>
</tbody>
</table>

Note: Every Skolem-type m-tuple has an even number of odds.
Example

\[4 - 8 + 6 + 13 - 15 = 0 \]

\(\langle \{4, 6, 8, 13, 15\} \rangle_n \) into \(n \) 5-cycles for all \(n \geq 31 \)
Existence of Skolem-type difference sets

Theorem (Bryant, J. & Ling, 2003)
- There exists a Skolem-type m-tuple difference set of order t if and only if $mt \equiv 0, 3 \pmod{4}$.
- There exists a hooked Skolem-type m-tuple difference set of order t if and only if $mt \equiv 1, 2 \pmod{4}$.

Theorem (Bryant, J. & Ling, 2003)
\[
\langle \{1, 2, \ldots, mt\} \rangle_n \text{ for } mt \equiv 0, 3 \pmod{4}
\]
and
\[
\langle \{1, 2, \ldots, mt-1, mt+1\} \rangle_n \text{ for } mt \equiv 1, 2 \pmod{4}
\]
decompose into m-cycles for all $n \geq 2mt + 1$ ($n \neq 2mt + 2$ when $mt \equiv 2 \pmod{4}$).
Extended Skolem-type Difference Sets

Definition
A \(k \)-extended \(m \)-tuple difference set of order \(t \) is a set of \(t \) Skolem-type \(m \)-tuples whose entries, in absolute value, are \(\{1, 2, ..., mt + 1\} \setminus \{k\} \).

Example
26-extended Skolem-type 5-tuple difference set of order 6: partition of \(\{1, 2, ..., 31\}\setminus\{26\} \) into 5-tuples

\[
\begin{align*}
4 + 15 - 17 + 18 - 20 &= 0 \\
5 + 9 - 12 + 21 - 23 &= 0 \\
6 + 10 - 14 + 22 - 24 &= 0 \\
7 + 11 - 16 + 25 - 27 &= 0 \\
8 + 13 - 19 + 28 - 30 &= 0 \\
1 + 3 - 2 + 29 - 31 &= 0 \\
\end{align*}
\]

What can this give us?
- decomposition of \(K_{63} \) into 5-cycles and one 63-cycle
- decomposition of \(K_{65} \) into 5-cycles, one 2-factor of 5-cycles, and one 65-cycle
- decomposition of \(K_n \) (\(n \geq 65 \)) into 5-cycles, one 2-factor with cycles of lengths \(n/\gcd(n, 26), \left\lfloor (n - 1)/2 \right\rfloor - 31 \) \(n \)-cycles, and a 1-factor if \(n \) is even
Existence of (hooked) extended Skolem-type 5-tuples

Theorem (Helms, J., Murray, Zeppetello, 2011)

- For positive integers \(k \) and \(t \) with \(k \leq 5t + 1 \), there exists a \(k \)-extended Skolem-type 5-tuple difference set of order \(t \) if and only if \(k \) is odd and \(t \equiv 0, 1 \pmod{4} \) or \(k \) is even and \(t \equiv 2, 3 \pmod{4} \).

- For positive integers \(k \) and \(t \) with \(k < 5t + 1 \), there exists a hooked \(k \)-extended Skolem-type 5-tuple difference set of order \(t \) if and only if \(k \) is odd and \(t \equiv 2, 3 \pmod{4} \) or \(k \) is even and \(t \equiv 0, 1 \pmod{4} \).
Corollary (H., J., M., Z., 2011)
Let \(k, t, \) and \(n \) be positive integers with \(k \leq 5t + 1 \) and \(n \geq 10t + 3 \) with \(n \neq 10t + 4 \) when \(k \) is odd and \(t \equiv 2, 3 \mod 4 \) or \(k \) is even and \(t \equiv 0, 1 \mod 4 \).
Then \(K_n \) can be decomposed into
- \(tn \) 5-cycles,
- a 2-factor consisting of \(k \) cycles of length \(n/\gcd(n, k) \),
- \(\lceil (n - 1)/2 \rceil - (5t + 1) \) \(n \)-cycles, and
- a 1-factor if \(n \) is even.
Existence of Langford-type m-tuples

Theorem (Helms, J., Murray, Zeppetello, 2011)

There exists a Langford-type m-tuple difference set of order t and defect d

- for all positive integers t and d when $m \equiv 0 \pmod{4}$;

- for all positive integers t and d with $t \equiv 0, 2 \pmod{4}$ when $m \equiv 2 \pmod{4}$;

- for all positive integers t and d with $2d - 1 \leq t$ and $t \equiv 0, 1 \pmod{4}$ if d is odd, or $t \equiv 2, 3 \pmod{4}$ if d is even when $m \equiv 3 \pmod{4}$;

- for all positive integers t and d with $t \equiv 0, 1 \pmod{4}$ and $2d \leq t$ if d is even, or $t \equiv 0, 3 \pmod{4}$ and $2d \leq t - 5$ when $m \equiv 1 \pmod{4}$
Open Problems

Generalize any generalization of Skolem sequences to Skolem-type m-tuples!

Guiding Principle: Always partition a set with an even number of odd integers.
Thank you!