Consider the following information for two zero-coupon bonds, Bond A and Bond B:

<table>
<thead>
<tr>
<th>Bond</th>
<th>Face Value</th>
<th>Price</th>
<th>Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$1,000</td>
<td>$943.40</td>
<td>1 year</td>
</tr>
<tr>
<td>B</td>
<td>$1,000</td>
<td>$857.34</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Calculate the forward rate for the second year. Pick the answer choice that is the closest to the exact value.

A. 6.00% B. 8.00% C. 10.00% D. 12.00% E. 14.00%

Solution.
Let us write s_1 for the spot rate for the first year, s_2 for the spot rate for year two, and $f_{1,2}$ for the forward rate from time 1 to time 2, i.e., the forward rate for the second rate.

We have $943.40 \cdot (1 + s_1) = 1000$, $857.34 \cdot (1 + s_2)^2 = 1000$, and

$\left(1 + s_1\right) \cdot \left(1 + f_{1,2}\right) = \left(1 + s_2\right)^2$.

Therefore

$1 + f_{1,2} = \frac{(1 + s_2)^2}{1 + s_1} = \frac{1000}{857.34} = \frac{943.40}{857.34} \approx 1.100380$.

This gives $f_{1,2} \approx 10.0380\%$.

Answer C.

© Copyright 2011 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.