1. Use \(f(x) = 2x^2 - 3x + 1 \) to respond to (a) through (d).
 a. Calculate \(f'(x) \).
 b. Determine an equation for the line tangent to the graph of \(f \) when \(x = -1 \).
 c. Determine all values of \(x \) that lead to a horizontal tangent line.
 d. Determine all ordered pairs of \(f \) for which \(f'(x) = 1 \).

2. Suppose \(s(x) = 3x^4 - 2x^2 + \frac{s}{x} \) represents an object’s position as it moves back and forth on a number line, with \(s \) measured in centimeters and \(x \) in seconds, for \(x > 0 \).
 a. Calculate the object’s velocity and acceleration functions.
 b. Is the object moving left or right at time \(x = 1 \)? Justify.
 c. Determine the object’s velocity and acceleration at time \(x = 2 \). Based on those results, describe everything you can about the object’s movement at that instant.
 d. Write an equation for the tangent line to the graph of \(s \) at time \(x = 1 \).

3. Use \(g(x) = x\sqrt{x} \) to respond to (a) through (c).
 a. Determine the equation for the line tangent to the graph of \(g \) at \(x = 4 \).
 b. Determine the equation for the line normal to the graph of \(g \) at \(x = 1 \).
 c. At what points on the graph of \(g \), if any, will a tangent line to the curve be parallel to the line \(3x - y = -5 \)?

4. Use \(h(t) = \cos(2t) \) to respond to (a) through (e).
 a. Calculate \(h'(t) \) and \(h''(t) \).
 b. Determine an equation for the line tangent to the graph of \(h \) when \(t = \pi/8 \).
 c. Determine the two values of \(t \) closest to \(t = 0 \) that lead to horizontal tangent lines.
 d. Determine the smallest positive value of \(t \) for which \(h'(t) = 1 \).
 e. If \(h(t) \) represents an object’s position on the number line at time \(t \) (\(h \) in feet, \(t \) in minutes), calculate the object’s velocity and acceleration at time \(t = \pi/12 \). Based on those results, describe everything you can about the object’s movement at that instant.
1. \(f(x) = 2x^2 - 3x + 1 \)
 a) \(f'(x) = 4x - 3 \)
 b) at \(x = -1 \): \(f(-1) = 2(-1)^2 - 3(-1) + 1 = 6 \)
 at \(x = -1 \): \(f'(-1) = 4(-1) - 3 = -7 \)
 So point is \((-1, 6)\) with slope \(m = -7 \)
 \[y - 6 = (-7)(x - (-1)) \]
 \[y = -7x - 1 \]
 c) horizontal tangent \(\Rightarrow f'(x) = 0 \)
 \(\Rightarrow \) seek \(x \) so that \(4x - 3 = 0 \) \(\Rightarrow x = \frac{3}{4} \)
 \(f'\left(\frac{3}{4}\right) = 0 \Rightarrow \) horizontal tangent line
 d) \(f'(x) = 1 \) \(\Rightarrow 4x - 3 = 1 \) \(\Rightarrow x = 1 \)
 if \(x = 1 \), \(f(1) = 0 \)
 desired ordered pair: \((1, 0)\)
(2) \(s(x) = 3x^4 - 2x^2 + \frac{5}{x} \) (position on number line, \(x > 0 \))

\(a) \) velocity: derivative of position, so
\[u(t) = s'(t) = 12x^3 - 4x - \frac{5}{x^2} \]
acceleration: derivative of velocity, second derivative of position
\[a(t) = v'(t) = s''(t) = 36x^2 - 4 + \frac{10}{x^3} \]

\(b) \) Right Movement: \(u > 0 \); Left Movement: \(u < 0 \)

at \(x = 1 \):
\[u(1) = 12 - 4 - 5 = 3, \text{ so } u(1) > 0 \Rightarrow \text{ object moving to the right.} \]

\(c) \) at \(x = 2 \):
\[u(2) = \frac{347}{4} > 0 \Rightarrow \text{ object moving right} \]
\[a(2) = \frac{565}{4} \]
acceleration is the derivative of velocity, so when \(a > 0 \) and \(u > 0 \), the object is moving right \((u > 0) \) and the velocity is increasing \((a > 0) \). Thus, with \(s(2) = \frac{85}{2} \), at \(x = 2 \) we know the object is at the point \(\frac{85}{2} \) on the number line, the object is moving right \((u > 0) \), and it is moving at a faster rate \((a > 0) \) in that direction.

\(d) \) at \(x = 1 \):
\[s(1) = 6, \ s'(1) = u(1) = 3, \text{ so} \]
\[y - 6 = 3(x - 1) \Rightarrow y = 3x + 3 \]
3. \(g(x) = x\sqrt{x} = x \cdot x^{\frac{1}{2}} = x^{\frac{3}{2}} \)

a) tangent line at \(x=4 \):

Need \(g'(x) = \frac{3}{2} \cdot x^{\frac{1}{2}} = \frac{3}{2} \cdot \sqrt{x} \)

So \(g'(4) = \frac{3}{2} \cdot \sqrt{4} = 3 \)

and \(g(4) = 4 \cdot \sqrt{4} = 8 \)

So \(y - 8 = 3(x - 4) \Rightarrow y = 3x - 4 \)

b) normal to graph at \(x=1 \).

Note: Whereas the tangent line at a point matches (is equal to) the slope of the curve, the normal line has slope perpendicular to the slope at the point. Recall that any two non-zero slopes for perpendicular lines are opposite reciprocals of each other.

So, at \(x=1 \), \(g'(1) = \frac{3}{2} \cdot \sqrt{1} = \frac{3}{2} \), so the normal line has slope of \(\frac{(-1)}{g'(1)} = \frac{-1}{\frac{3}{2}} = -\frac{2}{3} \). We need a point, \(g(1) = (1)\sqrt{1} = 1 \), so slope is \(-\frac{2}{3}\) and point is \((1,1) \Rightarrow y - 1 = (-\frac{2}{3})(x - 1) \)

or \(y = (-\frac{2}{3})(x) + \frac{5}{3} \)
(3-continued)

(c) Where on \(g \) is tangent line parallel to \(3x - y = -5 \)?

The line \(3x - y = -5 \), or \(y = 3x + 5 \), has slope of 3. So we seek points on \(g \) with slope 3: \(g'(x) = \frac{3}{2} \sqrt{x} \), so we seek \(x \) to make \(g'(x) = 3 \):

\[
\frac{3}{2} \sqrt{x} = 3 \implies \sqrt{x} = 2 \implies x = 4
\]

And \(g(4) = 4\sqrt{4} = 4 \cdot 2 = 8 \). Therefore, \(g(x) \) is parallel to \(3x - y = -5 \) at the point \((4, 8)\).
(4) \(h(t) = \cos(2t) \)

\[a) \quad h'(t) = -\sin(2t) \cdot 2 = -2\sin(2t) \]
\[h''(t) = \frac{d}{dt}(-2\sin(2t)) = (-2\cos(2t)) \cdot 2 \]
\[= -4\cos(2t) \]

\[b) \text{ tangent line equation at } t = \frac{\pi}{8}: \]
- At \(t = \frac{\pi}{8} \), \(h(t) = h\left(\frac{\pi}{8}\right) = \cos\left(2 \cdot \frac{\pi}{8}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \)
- At \(t = \frac{\pi}{8} \), \(h'(t) = h'\left(\frac{\pi}{8}\right) = -2\sin(2 \cdot \frac{\pi}{8}) = -2\sin\left(\frac{\pi}{4}\right) = -\sqrt{2} \)

So the point is \(\left(\frac{\pi}{8}, \frac{\sqrt{2}}{2}\right) \) and slope is \(-\sqrt{2} \):

\[y - \frac{\sqrt{2}}{2} = (-\sqrt{2})(x - \frac{\pi}{8}) \]
\[\Rightarrow \quad y = -\sqrt{2}x + \frac{\pi\sqrt{2}}{8} + \frac{\sqrt{2}}{2} \]

or

\[y = -\sqrt{2}x + \frac{\sqrt{2}(\pi + 4)}{8} \]

c) horizontal tangent \(\Rightarrow \) slope is 0 \(\Rightarrow \) \(h'(t) = 0 \)

So we seek \(t \), \(t \) close to 0, such that
\[h'(t) = 0 \quad \Rightarrow \quad h'(t) = -2\sin(2t), \quad \text{so calculate } t; \]
\[0 = -2\sin(2t) \Rightarrow \sin(2t) = 0 \quad \Rightarrow \quad \sin(t) = 0 \quad \text{if } \]
\(t = \pi k, \text{ an integer} \), so \(k = 1, k = -1 \) give no values \(t \).
(4 con't)

(c - con't)

So \(k = \pm 1 \) give us values close to \(t = 0 \),
and \(2t = \pi \) \((k=1)\) \(\Rightarrow t = \frac{\pi}{2} \)
and \(2t = -\pi \) \((k=-1)\) \(\Rightarrow t = -\frac{\pi}{2} \).

So the values closest to \(t = 0 \) that give us horizontal tangents occur at \(t = \pm \frac{\pi}{2} \).

(d) \(h'(t) = 1 \Rightarrow -2 \sin(2t) = 1 \Rightarrow \)
\(\sin(2t) = -\frac{1}{2} \); we know \(\sin(u) = -\frac{1}{2} \)
for \(u = \frac{7\pi}{6} \) \((u > 0) \), so \(2t = \frac{7\pi}{6} \) \(\Rightarrow \)
\(t = \frac{7\pi}{12} \) is the smallest positive \(t \) value

generating \(h'(t) = 1 \).

(e) \(v(t) = h'(t) = -2 \sin(2t) \) \((\text{see} \ (4a))\)
\(a(t) = h''(t) = -4 \cos(2t) \) \((\text{see} \ (4a))\)

So \(v(\frac{\pi}{2}) = -2 \sin(2 \cdot \frac{\pi}{2}) = -2 \sin(\pi) = -2(0) = -0 \) \(\text{ft/sec} \)
\(a(\frac{\pi}{2}) = -4 \cos(2 \cdot \frac{\pi}{2}) = -4 \cos(\pi) = -4(-1) = 4 \) \(\text{ft/sec}^2 \)

So at \(t = \frac{\pi}{2} \), \(v < 0 \), \(a > 0 \); the object is moving to the left \((v < 0) \) and velocity is decreasing \((a > 0) \).
(4e-cont')

Focus more specifically on this

If $v < 0$ (and, therefore, object moving left) and $a < 0$ (velocity decreasing), this means velocity is moving further & further left of 0 -> meaning the speed of the object is picking up; the object is moving "faster & faster" in a negative (left) direction.

(look at graphs of h, \dot{h}, \ddot{h}) at the same time.