November 2001 Course 1 Examination, Problem No. 25, also P Sample Exam Questions, Problem No. 111, and Dr. Ostaszewski’s online exercise posted January 16, 2010

Once a fire is reported to a fire insurance company, the company makes an initial estimate, X, of the amount it will pay to the claimant for the fire loss. When the claim is finally settled, the company pays an amount, Y, to the claimant. The company has determined that X and Y have the joint density function

$$f(x, y) = \frac{2}{x^2(x-1)} y^{\frac{2x-1}{x-1}}$$

for $x > 1$, $y > 1$. Given that the initial claim estimate by the company is 2, determine the probability that the final settlement amount is between 1 and 3.

A. $\frac{1}{9}$ B. $\frac{2}{9}$ C. $\frac{1}{3}$ D. $\frac{2}{3}$ E. $\frac{8}{9}$

Solution.

We will use subscripts in the densities to indicate their random variables. The probability that we are looking for is

$$\Pr \left(1 < Y < 3 \mid X = 2 \right) = \int_1^3 f_Y(y \mid X = 2) dy = \int_1^3 \frac{f_{X,Y}(2,y)}{f_X(2)} dy.$$

We have

$$f_{X,Y}(2,y) = \frac{2}{4(2-1)} y^{-\frac{(4-1)}{2-1}} = \frac{1}{2} y^{-3},$$

for $y > 1$, and

$$f_X(2) = \int_{\text{all } y} f_{X,Y}(2,y) dy = \int_1^\infty \frac{1}{2} y^{-3} dy = -\frac{1}{4} y^{-2} \bigg|_{y=1}^{y=\infty} = \frac{1}{4}.$$

Therefore,

$$f_Y(y \mid X = 2) = \frac{f_{X,Y}(2,y)}{f_X(2)} = \frac{1}{2} y^{-3} = 2y^{-3}.$$
for $y > 1$. Finally

$$\Pr(1 < Y < 3 \mid X = 2) = \int_1^3 2y^{-3} dy = \left(-y^{-2} \right) \bigg|_{y=1}^{y=3} = \left(-\frac{1}{9} \right) - (-1) = \frac{8}{9}. $$

Answer E.