Krzys’ Ostaszewski: http://www.krzysio.net
Author of the BTDT Manual (the “Been There Done That!” manual) for Course P/1
http://smartURL.it/krzysioP (paper) or http://smartURL.it/krzysioPe (electronic)
Instructor of online P/1 seminar: http://smartURL.it/onlineactuary

If you find these exercises valuable, please consider buying the manual or attending the seminar, and if you can’t, please consider making a donation to the Actuarial Program at Illinois State University: https://www.math.ilstu.edu/actuary/giving/
Donations will be used for scholarships for actuarial students. Donations are tax-deductible to the extent allowed by law.

If you have questions about these exercises, please send them by e-mail to: krzysio@krzysio.net

Exercise for January 24, 2009

May 2003 Course 1 Examination, Problem No. 23, also Study Note P-09-08, Problem No. 71

The time \(T \) that a manufacturing system is out of operation has cumulative distribution function

\[
F(t) = \begin{cases}
1 & - \left(\frac{2}{t} \right)^2, \quad \text{for } t > 2, \\
0 & \text{otherwise.}
\end{cases}
\]

The resulting cost to the company is \(Y = T^2 \). Determine the density function of \(Y \), for \(y > 4 \).

A. \(\frac{4}{y^2} \) B. \(\frac{8}{y^3} \) C. \(\frac{8}{y^3} \) D. \(\frac{16}{y} \) E. \(\frac{1024}{y^5} \)

Solution.
The cumulative distribution function of \(Y \) is

\[
F_Y(y) = \Pr(Y \leq y) = \Pr(T^2 \leq y) = \Pr(|T| \leq \sqrt{y}) = \Pr(T \leq \sqrt{y}) = F_T(\sqrt{y}) = 1 - \frac{4}{y},
\]
for \(y > 4 \). Differentiate to obtain the density function \(f_Y(y) = 4y^{-2} \). Alternatively, you can differentiate \(F(t) = F_T(t) \) to obtain \(f_T(t) = 8t^{-3} \) and consider the transformation given: \(y = t^2 \). The inverse of the transformation is \(t = \sqrt{y} \) and its derivative is

\[
\frac{dt}{dy} = \frac{1}{2\sqrt{y}}, \quad \text{so that}
\]

\[
f_Y(y) = f_T(t(y)) \left| \frac{dt}{dy} \right| = f_T(\sqrt{y}) \frac{d}{dy} \left(\sqrt{y} \right) = 8y^{-\frac{3}{2}} \cdot \frac{1}{2\sqrt{y}} = 4y^{-2}.
\]

Answer A.
© Copyright 2004-2009 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.