A company offers earthquake insurance. Annual premiums are modeled by an exponential random variable with mean 2. Annual claims are modeled by an exponential random variable with mean 1. Premiums and claims are independent. Let \(X \) denote the ratio of claims to premiums. What is the density function of \(X \)?

\begin{align*}
\text{A. } & \frac{1}{2x+1} \\
\text{B. } & \frac{2}{(2x+1)^2} \\
\text{C. } & e^{-x} \\
\text{D. } & 2e^{-2x} \\
\text{E. } & xe^{-x}
\end{align*}

Solution.

Consider the following transformation \(X = \frac{U}{V}, \ Y = V \). Then the inverse transformation is \(U = XY, V = Y \). We know that \(f_{U,V}(u,v) = \frac{1}{2} e^{-u} e^{-\frac{v}{2}} \) for \(u > 0, \ v > 0 \). It follows that

\[
f_{X,Y}(x,y) = f_{U,V}(u(x,y),v(x,y)) \left| \frac{\partial(u,v)}{\partial(x,y)} \right| = \frac{1}{2} e^{-vx} e^{-\frac{y}{2}} \left| \det \begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix} \right| = \frac{1}{2} ye^{-vx} e^{-\frac{y}{2}}
\]

for \(xy > 0 \) and \(y > 0 \), or just \(x > 0 \) and \(y > 0 \). Therefore,

\[
f_X(x) = \int_0^\infty \frac{1}{2} ye^{-vx} e^{-\frac{y}{2}} dy = \int_0^\infty \frac{1}{2} ye^{-\left(\frac{x+1}{2}\right)y} dy = \frac{1}{2} \left(\frac{1}{x+\frac{1}{2}} \right) e^{-\left(\frac{x+1}{2}\right)^2} dy = \frac{1}{2} \cdot \frac{1}{x+\frac{1}{2}} \cdot \frac{1}{x+\frac{1}{2}} = \frac{2}{(2x+1)^2}.
\]

Answer B.

© Copyright 2004-2010 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of
Actuaries and/or Casualty Actuarial Society and are used here with permission.