P Sample Exam Questions, Problem No. 129, also Dr. Ostaszewski’s online exercise posted November 1, 2008

The cumulative distribution function for health care costs experienced by a policyholder is modeled by the function

\[F_X(x) = \begin{cases} 1 - e^{-\frac{x}{100}} & \text{for } x > 0, \\ 0 & \text{otherwise}. \end{cases} \]

The policy has a deductible of 20. An insurer reimburses the policyholder for 100% of health care costs between 20 and 120 less the deductible. Health care costs above 120 are reimbursed at 50%. Let \(G \) be the cumulative distribution function of reimbursements given that the reimbursement is positive. Calculate \(G(115) \).

A. 0.683 B. 0.727 C. 0.741 D. 0.757 E. 0.777

Solution.

Let \(W \) be the unconditional reimbursement amount, and let \(Y \) be the reimbursement, given that the reimbursement is positive. We have

\[W = \begin{cases} 0, & X \leq 20, \\ X - 20, & 20 < X \leq 120, \\ (120 - 20) + 0.5 \cdot (X - 120) = 40 + 0.5X, & X > 120. \end{cases} \]

But \(Y = (W | X > 20) \), so that

\[Y = \begin{cases} X - 20, & X \leq 120, \text{ given that } X > 20, \\ 40 + 0.5X, & X > 120, \text{ given that } X > 20. \end{cases} \]

Note that when \(X \leq 120, \ X - 20 \leq 100 < 115. \) Also, \(X \) has exponential distribution, with memoryless property. We conclude that
\[G(115) = \Pr(Y \leq 115) = \]
\[= \Pr\left(\{X \leq 120|X > 20\} \cup \{40 + 0.5X \leq 115\} \cap \{X > 120|X > 20\}\right) = \]
\[= \frac{\Pr(20 < X \leq 120)}{\Pr(X > 20)} + \Pr\left(\{120 < X \leq 150|X > 20\}\right) = \]
\[= \frac{\Pr(20 < X \leq 120)}{\Pr(X > 20)} + \frac{\Pr(120 < X \leq 150)}{\Pr(X > 20)} = \frac{\Pr(20 < X \leq 150)}{\Pr(X > 20)} \]
\[= \Pr(X \leq 130) = F_X(130) = 1 - e^{\frac{130}{100}} \approx 0.727. \]

Answer B.