A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car, the dealer also tries to persuade the customer to buy an extended warranty for the car. Let X denote the number of luxury cars sold in a given day, and let Y denote the number of extended warranties sold.

\[
\begin{align*}
\Pr(X = 0, Y = 0) = & \frac{1}{6}, & \Pr(X = 1, Y = 0) = & \frac{1}{12}, & \Pr(X = 2, Y = 0) = & \frac{1}{12}, \\
\Pr(X = 1, Y = 1) = & \frac{1}{6}, & \Pr(X = 2, Y = 1) = & \frac{1}{3}, & \Pr(X = 2, Y = 2) = & \frac{1}{6}.
\end{align*}
\]

What is the variance of X?

A. 0.47
B. 0.58
C. 0.83
D. 1.42
E. 2.58

Solution.

The marginal distribution of X is found by summing probabilities over all possible values of Y.

\[
\begin{align*}
f_X(0) = & \Pr(X = 0) = \sum_{y=0}^{0} \Pr(X = 0, Y = y) = \frac{1}{6}, \\
f_X(1) = & \Pr(X = 1) = \sum_{y=0}^{1} \Pr(X = 1, Y = y) = \frac{1}{12} + \frac{1}{6} = \frac{1}{4}, \\
f_X(2) = & \Pr(X = 2) = \sum_{y=0}^{2} \Pr(X = 2, Y = y) = \frac{1}{12} + \frac{1}{3} + \frac{1}{6} = \frac{7}{12}.
\end{align*}
\]

Therefore, the first moment of X equals

\[
E(X) = \sum_{y=0}^{2} x \cdot \Pr(X = x) = 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{4} + 2 \cdot \frac{7}{12} = \frac{17}{12},
\]

and the second moment equals

\[
E(X^2) = \sum_{y=0}^{2} x^2 \cdot \Pr(X = x) = 0^2 \cdot \frac{1}{6} + 1^2 \cdot \frac{1}{4} + 2^2 \cdot \frac{7}{12} = \frac{31}{12}.
\]
so that the variance equals

$$\text{Var}(X) = E(X^2) - (E(X))^2 = \frac{31}{12} - \left(\frac{17}{12}\right)^2 = 0.576.$$

Answer B.

© Copyright 2004-2009 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.