Exercise for December 29, 2007

May 2001 Course 1 Examination, Problem No. 35, also Study Note P-09-07, Problem No. 63

The warranty on a machine specifies that it will be replaced at failure or age 4, whichever occurs first. The machine’s age at failure, X, has density function

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{for } 0 < x < 5, \\ 0, & \text{otherwise}. \end{cases}$$

Let Y be the age of the machine at the time of replacement. Determine the variance of Y.

A. 1.3
B. 1.4
C. 1.7
D. 2.1
E. 7.5

Solution.

The random variable Y is effectively defined as the following function of:

$$Y = h(X) = \begin{cases} X, & \text{if } 0 \leq X \leq 4, \\ 4, & \text{if } 4 < X \leq 5. \end{cases}$$

Therefore,

$$E(Y) = E(h(X)) = \int_0^5 h(x) f_X(x) \, dx = \int_0^4 x \cdot \frac{1}{5} \, dx + \int_4^5 4 \cdot \frac{1}{5} \, dx = \frac{1}{10} x^2 \bigg|_{x=0}^{x=4} + \frac{4}{5} = \frac{16}{10} + \frac{4}{5} = \frac{12}{5},$$

$$E(Y^2) = E(h(X))^2 = \int_0^4 x^2 \cdot \frac{1}{5} \, dx + \int_4^5 16 \cdot \frac{1}{5} \, dx = \frac{1}{15} x^3 \bigg|_{x=0}^{x=4} + \frac{16}{5} = \frac{64}{15} + \frac{16}{5} = \frac{112}{15},$$

and

$$\text{Var}(Y) = E(Y^2) - (E(Y))^2 = \frac{112}{15} - \left(\frac{12}{5}\right)^2 = 1.71.$$

Answer C.

© Copyright 2004-2007 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.