November 2001 Course 1 Examination, Problem No. 38, also Study Note P-09-05, Problem No. 103
In a small metropolitan area, annual losses due to storm, fire, and theft are assumed to be independent, exponentially distributed random variables with respective means 1.0, 1.5, and 2.4. Determine the probability that the maximum of these losses exceeds 3.

A. 0.002 B. 0.050 C. 0.159 D. 0.287 E. 0.414

Solution.
Let X_1, X_2, and X_3 denote annual loss due to storm, fire, and theft, respectively. Let

$$Y = \max\{X_1, X_2, X_3\}.$$

Based on the information about the distributions of X_1, X_2, and X_3 we have:

$$\Pr(Y > 3) = 1 - \Pr(Y \leq 3) = 1 - \Pr(\max\{X_1, X_2, X_3\} \leq 3) =$$

$$= 1 - \Pr(\{X_1 \leq 3\} \cap \{X_2 \leq 3\} \cap \{X_3 \leq 3\}) =$$

$$= 1 - \Pr(X_1 \leq 3) \cdot \Pr(X_2 \leq 3) \cdot \Pr(X_3 \leq 3) =$$

$$= 1 - \left(1 - e^{-\frac{3}{1}}\right) \cdot \left(1 - e^{-\frac{3}{1.5}}\right) \cdot \left(1 - e^{-\frac{3}{2.4}}\right) \approx 0.414.$$

Answer E.

© Copyright 2004-2008 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.