The stock prices of two companies at the end of any given year are modeled with random variables X and Y that follow a distribution with joint density function

$$f(x, y) = \begin{cases} 2x, & \text{for } 0 < x < 1, \ x < y < x + 1, \\ 0, & \text{otherwise.} \end{cases}$$

What is the conditional variance of Y given that $X = x$?

A. $\frac{1}{12}$
B. $\frac{7}{6}$
C. $x + \frac{1}{2}$
D. $x^2 - \frac{1}{6}$
E. $x^2 + x + \frac{1}{3}$

Solution.

Let $f_x(x)$ be the marginal density function of X. Then

$$f_x(x) = \int_{x}^{x+1} 2xy\,dy = 2x(y)|_{y=x+1}^{y=x} = 2x(x+1) - 2x^2 = 2x$$

for $0 < x < 1$, and $f_x(x) = 0$ otherwise. Consequently,

$$f_y|X=x(y) = \frac{f_{x,y}(x,y)}{f_x(x)} = \begin{cases} 1, & \text{if } x < y < x + 1, \\ 0, & \text{otherwise.} \end{cases}$$

We see that the random variable $(Y|X=x)$ is uniform on the interval $(x, x+1)$, and therefore its mean is $x + \frac{1}{2}$, and its variance is $\frac{1}{12}$. You could calculate those parameters using calculus, but … you should not. You should know key properties of the uniform distribution.

Answer A.

© Copyright 2004-2010 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.