A diagnostic test for the presence of a disease has two possible outcomes: 1 for disease present and 0 for disease not present. Let \(X \) denote the disease state of a patient, and let \(Y \) denote the outcome of the diagnostic test. The joint probability function of \(X \) and \(Y \) is given by:

\[
\begin{align*}
\Pr(X = 0, Y = 0) &= 0.800, \\
\Pr(X = 1, Y = 0) &= 0.050, \\
\Pr(X = 0, Y = 1) &= 0.025, \\
\Pr(X = 1, Y = 1) &= 0.125.
\end{align*}
\]

Calculate \(\text{Var}(Y|X = 1) \).

A. 0.13
B. 0.15
C. 0.20
D. 0.51
E. 0.71

Solution.
First note that

\[
\Pr(Y = 0|X = 1) = \frac{\Pr(X = 1, Y = 0)}{\Pr(X = 1)} =
\]

\[
= \frac{\Pr(X = 1, Y = 0)}{\Pr(X = 1, Y = 0) + \Pr(X = 1, Y = 1)} = \frac{0.05}{0.05 + 0.125} \approx 0.2857,
\]

and

\[
\Pr(Y = 1|X = 1) = 1 - \Pr(Y = 0|X = 1) \approx 1 - 0.2857 = 0.7143.
\]

The random variable \(Y|X = 1 \) is just a Bernoulli Trial with the probability of success of \(p = 0.7143 \), and thus its variance is

\[
p \cdot (1 - p) = 0.7143 \cdot (1 - 0.7143) \approx 0.2041.
\]

Answer C.

© Copyright 2008-2010 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.