An insurance policy pays for a random loss X subject to a deductible of C, where $0 < C < 1$. The loss amount is modeled as a continuous random variable with density function

$$f(x) = \begin{cases} 2x, & \text{for } 0 < x < 1, \\ 0, & \text{otherwise}. \end{cases}$$

Given a random loss X, the probability that the insurance payment is less than 0.5 is equal to 0.64. Calculate C.

A. 0.1 \hspace{1cm} B. 0.3 \hspace{1cm} C. 0.4 \hspace{1cm} D. 0.6 \hspace{1cm} E. 0.8

Solution.

Denote the insurance payment by the random variable Y. Then

$$Y = \begin{cases} 0, & \text{if } 0 < X \leq C, \\ X - C, & \text{if } C < X < 1. \end{cases}$$

This relationship is illustrated in the graph below:

Based on the information given:
0.64 = \Pr(Y < 0.5) = \Pr(0 \leq X < 0.5 + C) = \int_{0}^{0.5+C} 2x \, dx = x^2 \bigg|_{x=0}^{x=0.5+C} = (0.5 + C)^2.

Therefore, solving for \(C \), we find \(C = \pm 0.8 - 0.5 \). Since \(0 < C < 1 \), we conclude that \(C = 0.3 \).
Answer B.

© Copyright 2004-2008 by Krzysztof Ostaszewski. All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited. Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.