A. 3466 B. 3659 C. 4159 D. 8487 E. 8987

Solution.
Let Y be the insurance company payout. Let X be the amount of loss given that an accident has happened. We are given that X is an exponential random variable with mean 3000. We are given that $Y = 0$ if there is no accident, which happens with probability 0.8, and if there is an accident and given that accident, the loss is less than 500, which happens with probability

$$Pr\left(\text{There is an accident}\right) \cdot Pr\left(X < 500\right) = 0.2 \cdot \left(1 - e^{-\frac{500}{3000}}\right) = 0.2 \cdot \left(1 - e^{-\frac{1}{6}}\right).$$

Otherwise, Y is positive, and given that an accident has happened, it is equal to $X - 500$.

We are looking for the 95-th percentile of Y, i.e., a number $y_{0.95}$ such that

$$Pr\left(Y < y_{0.95}\right) = 0.95.$$

But

$$Pr\left(Y = 0\right) = 0.8 + 0.2 \cdot \left(1 - e^{-\frac{1}{6}}\right) = 0.8307.$$

Therefore, the 95-th percentile of Y occurs in its range of values resulting from the situation that an accident happened and the loss is greater than 500. Note that

$$Pr\left(Y > y_{0.95}\right) = 0.05.$$
\[0.05 = \Pr(Y > y_{0.95}) = \Pr(\text{There is an accident}) \cdot \Pr(X - 500 > y_{0.95}) =
\]
\[= 0.2 \cdot \Pr(X > 500 + y_{0.95}) = 0.2 \cdot e^{-\frac{500+y_{0.95}}{3000}} = 0.2 \cdot e^{-\frac{1}{\delta}} \cdot e^{-\frac{y_{0.95}}{3000}}.
\]
Therefore,
\[e^{-\frac{y_{0.95}}{3000}} = \frac{0.05 \cdot e^{\frac{1}{\delta}}}{0.2} = \frac{e^{\frac{1}{\delta}}}{4}.
\]
This results in
\[-\frac{y_{0.95}}{3000} = \ln\left(\frac{\frac{1}{\delta}}{4}\right) = \frac{1}{6} - \ln 4,
\]
or
\[y_{0.95} = 3000\left(\ln 4 - \frac{1}{6}\right) = 3658.8831.
\]
Answer B.

© Copyright 2010 by Krzysztof Ostaszewski.

All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.

Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.