A perpetuity-immediate pays 100 per year. Immediately after the fifth payment, the perpetuity is exchanged for a 25-year annuity-immediate that will pay X at the end of the first year. Each subsequent annual payment will be 8% greater than the preceding payment. Immediately after the 10th payment of the 25-year annuity, the annuity will be exchanged for a perpetuity-immediate paying Y per year. The annual effective rate of interest is 8%. Calculate Y.

A. 110 B. 120 C. 130 D. 140 E. 150

Solution.
The value of the perpetuity is
\[
\frac{100}{0.08} = 1250.
\]
The value of the 25-year annuity-immediate it is exchanged for is:
\[
1250 = X \cdot \left(\frac{1}{1.08} + \frac{1.08}{1.08^2} + \cdots + \frac{1.08^{24}}{1.08^{25}} \right) = \frac{X}{1.08} \left(1 + \frac{1.08}{1.08} + \frac{1.08^2}{1.08^2} + \cdots + \frac{1.08^{24}}{1.08^{24}} \right) = 25Xv = 25\frac{X}{1.08}.
\]
This implies that
\[
X = \frac{1.08 \cdot 1250}{25} = 1.08 \cdot 50 = 54.
\]
When the second exchange happens, there are only 15 payments remaining of the 25-year annuity, and nine increases of its payments have already happened, so that the equation of value is:
\[
\frac{Y}{0.08} = 54 \cdot \left(\frac{1.08^{10}}{1.08} + \frac{1.08^{11}}{1.08^2} + \cdots + \frac{1.08^{24}}{1.08^{15}} \right) = 54 \left(\frac{1.08^{10}}{1.08} + \frac{1.08^{11}}{1.08^2} + \cdots + \frac{1.08^{24}}{1.08^{15}} \right) = 54 \cdot 1.08^9 \cdot 1.5.
This gives
\[Y = 0.08 \times 54 \times 1.08^9 \times 15 \approx 129.5. \]
Answer C.

© Copyright 2006-2007 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.