Kathryn deposits 100 into an account at the beginning of each 4-year period for 40 years. The account credits interest at an annual effective interest rate of i. The accumulated amount in the account at the end of 40 years is X, which is 5 times the accumulated amount in the account at the end of 20 years. Calculate X.

A. 4695 B. 5070 C. 5445 D. 5820 E. 6195

Solution.
The effective interest rate over a four-year period is $j = (1 + i)^4 - 1$. Using that rate, we have:

$$X = \frac{100}{d_j} = 100 \left(\frac{1 + j}{1 + j} - 1\right) = 5 \cdot 100 \frac{(1 + j)^5 - 1}{d_j}.$$

Therefore (note that the subscript j refers to the interest functions involving the interest rate j),

$$5 = \frac{(1 + j)^5 - 1}{(1 + j)^5 - 1} = (1 + j)^5 + 1.$$

Thus $(1 + j)^5 = 4$, and $j = 31.9508\%$. Also

$$d_j = \frac{j}{1 + j} \approx 24.2142\%.$$

Therefore:

$$X = \frac{100}{d_j} = 100 \cdot \frac{(1 + j)^{10} - 1}{d_j} = 100 \cdot \frac{4^2 - 1}{0.242142} \approx 6194.72.$$

Answer E.

© Copyright 2006-2007 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.