Study Note FM-09-05, Problem No. 53

Joe must pay liabilities of 1000 due 6 months from now and another 1000 due one year from now. There are two available investments:

- A 6-month bond with face amount of 1000, an 8% nominal annual coupon rate convertible semiannually, and a 6% nominal annual yield rate convertible semiannually; and

- A one-year bond with face amount of 1000, a 5% nominal annual coupon rate convertible semiannually, and a 7% nominal annual yield rate convertible semiannually.

What is the annual effective yield rate for investment in the bonds required to exactly (absolutely) match the liabilities?

A. 6.5% B. 6.6% C. 6.7% D. 6.8% E. 6.9%

Solution.

The cost of the bonds required to match the liabilities is

\[
\frac{1000}{1.03} + \frac{1000}{1.035063422^2} \approx 1904.27.
\]

Therefore, an investment of 1904.27 now produces cash flows of 1000 in six months and 1000 in a year. The yield rate \(i \) is the solution of the equation:

\[
1904.27 \cdot (1 + i) - 1000 \cdot (1 + i)^\frac{1}{2} - 1000 = 0.
\]

This can be treated as a quadratic equation with the unknown equal to \(x = (1 + i)^\frac{1}{2} \), and it solves to \(i = 6.777201\% \). On the other hand, using the simple interest approximation, we get:

\[
\frac{2000 - 1904.27}{1904.27 - \frac{1000}{2}} \approx \frac{95.73}{1404.27} = 6.817065\%.
\]

Luckily, this is the same one of the five choices. Answer D.

© Copyright 2006-2008 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of Actuaries and/or Casualty Actuarial Society and are used here with permission.