November 2001 Course 2 Examination, Problem No. 31
You have decided to invest in two bonds. Bond X is an n-year bond with semi-annual coupons, while bond Y is an accumulation bond (i.e., a zero-coupon bond) redeemable in $\frac{n}{2}$ years. The desired yield rate is the same for both bonds. You also have the following information:

- Bond X has par value of 1000. Its ratio of the semi-annual bond rate to the desired semi-annual yield rate, $\frac{r}{i}$, is 1.03125. Finally, the present value of its redemption value is 381.50.
- Bond Y has redemption value, which is the same as the redemption value of bond X. The price to yield for Bond Y is 647.80.

What is the price of bond X?

A. 1019
B. 1029
C. 1050
D. 1055
E. 1072

Solution.
Let C be the redemption value of bond X, which is also the maturity value of bond Y. For bond X its base amount is:

$$G = \frac{F}{i} = 1000 \cdot 1.03125 = 1031.25.$$

The present value of the redemption value for bond X is $381.50 = C v_{i}^{2/2}$. For bond Y, the price is $647.80 = C v_{i}^{n}$. By dividing the present value of the redemption value of bond X by the price of bond Y we get:

$$\frac{381.50}{647.80} = \frac{v_{i}^{2/2}}{v_{i}^{n}} = v_{i}^{n},$$

and this gives $v_{i}^{n} \approx 0.5889163$. Therefore

$$C = \frac{381.50}{v_{i}^{2/2}} = \frac{381.50}{\left(\frac{381.50}{647.50}\right)^{2}} = \frac{647.50^{2}}{381.50} \approx 1098.98.$$

Now we can calculate the price of bond X

$$P = G + (C - G) v_{i}^{2/2} = 1031.25 + \left(\frac{647.50^{2}}{381.50} - 1031.25\right) \cdot \left(\frac{381.50}{647.50}\right)^{2} \approx 1054.76.$$

Answer D.

© Copyright 2006 by Krzysztof Ostaszewski.
All rights reserved. Reproduction in whole or in part without express written permission from the author is strictly prohibited.
Exercises from the past actuarial examinations are copyrighted by the Society of
Actuaries and/or Casualty Actuarial Society and are used here with permission.