COURSE 6
MORNING SESSION
FINANCE AND INVESTMENTS
SECTION A—WRITTEN ANSWER
QUESTIONS
AND
ILLUSTRATIVE SOLUTIONS
MAY 2000
1. (4 points) You are an investor purchasing the following bond:

- 8-year maturity
- Annual coupon payments
- 4% annual coupon rate
- Priced to yield 4% per year
- Par value = 1000
- Market value upon purchase = 1000
- Noncallable bond
- Macaulay duration = 7.0 years

One day after purchasing the bond, interest rates increase to a 6% annual rate and remain at this level until bond maturity.

Assume bond coupons can be re-invested at a 6% annual rate.

(a) Calculate the following immediately after the fourth coupon payment:

(i) The accumulated value of re-invested coupons,

(ii) The market value of the bond, and

(iii) The total annual return.

Show all work.

(b) Explain the relationship between the total annual return after the fourth coupon payment and the yield-to-maturity when the bond was purchased.
Course 6 – May 2000 – Illustrative Solutions

Question #1

(a)
(i) \[40(1.06)^3 + 40(1.06)^2 + 40(1.06) + 40 = \$174.98 \]

(ii) MV of Bond \[\frac{40}{1.06} + \frac{40}{(1.06)^2} + \frac{40}{(1.06)^3} + \frac{1040}{(1.06)^4} = \$930.70 \]

(iii) Total Return = Capital appreciation + Accumulated interest
\[= -69.3 + 174.98 = 105.68 \]
\[\% \text{ Return} = \left(\frac{105.68}{1000} \right) = 10.57\% \]
\[\text{Annual Eff. Yield} = (1.1057)^{1/4} - 1 = 2.54\% \]

(b) Total Annual Return is less than original yield due to the increase in interest rates and the positive duration of the bond.

The increase in reinvestment returns somewhat offset the decrease in market value.

The longer the holding period, the better the return would have been.

If held for 7 years (duration of bond) the increased reinvestment returns would have exactly offset the decrease in market value and given you the initial return of 4% annual.
2. *(6 points)* With respect to fixed income portfolio management:

(a) Describe the mechanics of a cash flow matching strategy.

(b) Describe the types of combination strategies available to a portfolio manager.
Course 6 – May 2000 – Illustrative Solutions

Question #2

(a) Cash-Flow Matching

- This is the process by which we have an asset maturing (payable) to use at the same time as our liability is due.
- Can be a difficult task matching all cash flows.
- May have to rebalance if asset defaults.

To do this, you must understand:

(i) Nature of your liabilities
- In order to cash-flow match, you’d have to know what liabilities you have, when they are payable, the amount.
- Example would be a group of retired lives (pensioners). We know that we have to pay them off each month and the amount is usually fixed.
- This could also be used for a block of defined vesteds. You know when they will retire and how much they will receive.
- Difficult to apply to an active group.

(ii) Constraints of cash-flow matching
- Call risk. If you are backing your liabilities with callable bonds and they get called, you may not have sufficient funds to pay them off.
- Type of issuer.
- Diversification. Thus, if the sector or group of securities happens to default, you won’t lose considerable money and be unable to make payments.
- Credit. You want to have good credit securities backing your assets to prevent default risk.
- Liquidity. Need liquidity in order to make any required payment.

(iii) Cash Flow
- The cash flow on your assets will be value of assets at beginning + interest income + reinvestment income = required payment.

(iv) Reinvestment Rate
- The rate which you assumed your asset cash flows will be reinvested at.
- Need to be conservative to ensure the payments of liabilities. If we have an aggressive reinvestment rate, we may not have enough assets to pay for liabilities.

(v) Optimization Techniques
- We could use some sort of linear programming to ensure that we have the optimal combination to pay off our liabilities.
- Quadratic programming.
- Stepwise regression.

(vi) Pricing the Bonds
- If we’ve supported our assets with bonds, it’s important to ensure that they are priced correctly. We may want to get an independent firm to assist with the pricing.
- Defaults are the most important concern.
- Downgrades.

(vii) Re-optimization
- Assets default, or
- Our liabilities cash flow changes (e.g., if a pensioner dies) it may be necessary to rebalance our cash-flow matching.

(viii) Active Management
- There is some active management in cash-flow matching, as if we can find another security with the same characteristics as our current security, yet with a higher yield, we would definitely switch to the higher yielding security.

(b) Combination Strategies

(i) Active/Passive. Here we may have a portion of our portfolio which we will actively manage and another portion which we’ll be passive with → (use index funds or adopt a buy-and-hold strategy).

(ii) Active/Immunization
- Have an active portion and another percentage you immunize.
- Immunize by:

\[
P V(\text{Assets}) \geq P V(\text{Liabilities})
\]

\[
\text{Duration (Asset)} = \text{Duration (Liabilities)}
\]

(iii) Contingent Immunization. Here we have a lower bound for our return and as soon as that lower bound is reached, we switch our portfolio to a completely immunized portfolio from a completely active portfolio.

(iv) Horizon Strategies. Here we use cash-flow matching up to the “horizon” and then immunize the portfolio from the “horizon” point on.
(v) Combination by Formula. We calculate the active percentage in our portfolio by the following formula:

\[
\frac{(ITR - MR)}{ITR - WC}
\]

\(ITR\) = Immunization target return.
\(MR\) = Minimum rates.
\(WC\) = Worst-case return.

(vi) Multiple Asset Performance.
- This is when we select the assets that are performing the best.
- Involves many transactions.
- The strategy will involve buying calls to purchase the different assets.
- Involves market timing.
- Switch from current portfolio to a higher yielding one.
ABC Insurance Company has a large block of flexible premium life insurance policies in force. For each policy the premiums paid are deposited into that policy’s Fund. Every month, the Fund is credited with interest based on 5-year Treasury notes and is reduced to pay for the cost of insurance.

The benefits provided by the policies are:

- Death benefit is the face amount plus the Fund.
- Surrender benefit is the Fund.

The asset portfolio backing all life insurance policies of the company is managed to match the performance of a bond index.

The investment manager has suggested that an immunized portfolio be used to back these flexible premium life insurance policies.

(a) Describe how immunization could be applied to this block of flexible premium life insurance policies.

(b) Compare bond indexing to immunization.

(c) Describe the organizational issues related to asset liability management for this block of flexible premium life insurance policies.
Course 6 – May 2000 – Illustrative Solutions

Question #3

(a) Immunization involves matching duration of assets and liabilities.
 (i) By matching the effective duration of the asset and the liabilities, the market value of
 assets and liabilities will respond with the same sensitivity toward interest rates change
 and hence, its surplus will be immunized.
 (ii) Three conditions need to be met to immunize this block of multiple liabilities:
 - Effective duration of assets = effective deviation of liabilities.
 - Present value of assets = Present value of liabilities
 - Dispersion of assets > Dispersion of liabilities.

(b) Bond indexing compared to immunization:
 - Bond indexing minimizes expectational inputs because it is a form of passive
 management.
 - Bond indexing tries to match its rate of return to that of the index.
 - Compared to immunization, bond indexing gives the company a greater control over its
 investment managers: it also lowers advisory and non-advisory fees.
 - Transaction costs are lower because bond indexing involves mostly buy-and-hold,
 whereas immunization requires frequent transaction to rebalance the asset and liability
 duration.
 - However, bond indexing limits the selection of securities because the investment
 manager is limited to the securities that are present in the index. On the other hand,
 immunization has no such restriction (except those placed by the company itself) and
 managers can take advantage of the more attractive assets in the market.
 - There is always a danger that even though the portfolio return is matched to the bond
 index, it is not sufficient to meet the company’s objectives. Bond indexing may not be
 the optimal portfolio.
 - But there are disadvantages in immunization, e.g., it only assumes parallel yield changes,
 it requires frequent transactions, it focuses on instantaneous price change instead of
 future liability value.

(c) Organization Issues
 (1) ALM Process
 - The assets and liabilities should be coordinated effectively to minimize losses.
 - The actuaries should understand this process and have well-defined
 responsibilities.
 - Frequent communication among the managers is required.

 (2) Investment Policy
 - It should be stated in the investment policy a neutral position and the permissible
deviation from this position.
- The managers should have written guidelines as to how to manage the portfolio.
- This policy should be frequently reviewed.

(3) ALM Expertise
- Makes sure that the managers handling this has a proven track record and the
knowledge and expertise. They should also understand both the assets and
liabilities side of the flexible premium life business.

(4) Segmentation of Assets
- Flexible premium life policies can be segmented into the insurance part and an
investment portion.
- Different segments have different risk management strategies.
- Be careful not to over-segment the assets because this can result in reduced
yield.

(5) Liability Pricing Practice
- When pricing, the assumptions should be realistic
4. (8 points) You are given the following information:

- A U.S. company had $20,000,000 to invest. It had the opportunity to invest in 8% fixed interest U.S. dollar bonds and 8% fixed interest Euro (€) bonds.
- The U.S. company entered into the following 3-year swap deals that exchanged the fixed interest rates for variable rates.

Deal 1:
- A broker-dealer found a bank in England that provided a 3-year currency swap for notional principal of $10,000,000/€12,500,000 paying 12-month LIBOR.
- The broker-dealer agreed to pay the bank in England 7.8% payable annually.
- At the time of the transaction, the exchange rate was $1U.S. = 1.25 Euros.

Deal 2:
- The broker-dealer found a local bank that provided a 3-year interest rate swap for notional principal of $10,000,000 paying 6-month LIBOR with an 11% (annual) Cap.
- The broker-dealer agreed to pay the local bank 7.9% annually

<table>
<thead>
<tr>
<th>Time (years):</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange rate (Euro per $1U.S.)</td>
<td>€1.25</td>
<td></td>
<td>€1.2</td>
<td></td>
<td>€1.35</td>
<td></td>
<td>€1.4</td>
</tr>
<tr>
<td>6-month LIBOR</td>
<td>7%</td>
<td>6.9%</td>
<td>6.5%</td>
<td>10%</td>
<td>11.5%</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>12-month LIBOR</td>
<td>8%</td>
<td>7.5%</td>
<td></td>
<td>12%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Show the payment and receipt cash flows for the deal with the bank in England (Deal 1) for each of:
- (i) The bank in England
- (ii) The U.S. company

(b) Show the payment and receipt cash flows for the deal with the local bank (Deal 2) for each of:
- (i) The local bank
- (ii) The U.S. company

(c) Analyze the advantages and disadvantages of these two deals to the U.S. company.

Show all work.
Question #4

(a) Deal 1

<table>
<thead>
<tr>
<th>Bank of England</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 0</td>
<td></td>
</tr>
<tr>
<td>Gets $10,000,000</td>
<td>Gets €12,500,000</td>
</tr>
<tr>
<td>Gives €12,500,000</td>
<td>Gives $10,000,000</td>
</tr>
</tbody>
</table>

At the beginning, Notional Amounts are exchanged. Exchanges are through a Broker-Dealer (B/D)

<table>
<thead>
<tr>
<th>Time 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets €975,000</td>
<td>Gets $800,000 = $10,000,000 × 8%</td>
</tr>
<tr>
<td>Gives $800,000</td>
<td>Gives €1,000,000</td>
</tr>
</tbody>
</table>

All payments (all years are made through a B/D)
Each year:

– U.S. Company gives €1,000,000 = €12,500,000 × 8% to B/D.
– Bank of England gets €975,000 = €12,500,000 × 7.8% from B/D.
– Bank of England gives, and U.S. Co. gets (via B/D), $10,000,000 × 12 month LIBOR

<table>
<thead>
<tr>
<th>Time 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets €975,000</td>
<td>Gets $750,000 = $10,000,000 × 7.5%</td>
</tr>
<tr>
<td>Gives $750,000</td>
<td>Gives €1,000,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets €975,000</td>
<td>Gets $1,200,000 = $10,000,000 × 12%</td>
</tr>
<tr>
<td>Gives $1,200,000</td>
<td>Gives €1,000,000</td>
</tr>
</tbody>
</table>

Also, at end, Notional amounts are exchanged back.
(b) Deal 2

<table>
<thead>
<tr>
<th>Time 0</th>
<th>Local Bank</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No initial swap of notional amounts.</td>
<td>No initial swap of notional amounts.</td>
</tr>
<tr>
<td>Time 0.5</td>
<td>Gets $395,000</td>
<td>Gets $350,000 = $10,000,000 × 7%/2</td>
</tr>
<tr>
<td></td>
<td>Gives $350,000</td>
<td>Gives $400,000</td>
</tr>
</tbody>
</table>

All payments (all years) are made through a B/D.

Each ½ year:
- Company gives $400,000 = $10,000,000 × 7.9%/2 from B/D.
- Local Bank gets $395,000 = $10,000,000 × 7.9%/2 from B/D.
- Local Bank gives, and U.S. Co. gets (via B/D)
 $10,000,000 × 6 months LIBOR/2 (subject to cap)

<table>
<thead>
<tr>
<th>Time 1.0</th>
<th>Local Bank</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gets $395,000</td>
<td>Gets $345,000 = $10,000,000 × 6/9%/2</td>
</tr>
<tr>
<td></td>
<td>Gives $345,000</td>
<td>Gives $400,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time 1.5</th>
<th>Local Bank</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gets $395,000</td>
<td>Gets $325,000 = $10,000,000 × 6.5%/2</td>
</tr>
<tr>
<td></td>
<td>Gives $325,000</td>
<td>Gives $400,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time 2.0</th>
<th>Local Bank</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gets $395,000</td>
<td>Gets $500,000 = $10,000,000 × 10%/2</td>
</tr>
<tr>
<td></td>
<td>Gives $500,000</td>
<td>Gives $400,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time 2.5</th>
<th>Local Bank</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gets $395,000</td>
<td>Gets $550,000 = $10,000,000 × 11%/2</td>
</tr>
<tr>
<td></td>
<td>Gives $550,000</td>
<td>Gives $400,000</td>
</tr>
</tbody>
</table>

Cap of 11% on 6-month LIBOR rate applies in this period and the next.

<table>
<thead>
<tr>
<th>Time 3.0</th>
<th>Local Bank</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gets $395,000</td>
<td>Gets $550,000 = $10,000,000 × 11%/2</td>
</tr>
<tr>
<td></td>
<td>Gives $550,000</td>
<td>Gives $400,000</td>
</tr>
</tbody>
</table>

(c) Advantages and Disadvantages to U.S. Company

Deal 1:
• Advantage – U.S. Company guaranteed 12-month LIBOR w/o limitation.
• Advantage – By setting up swap, U.S. Company eliminates any exchange rate risk.
• Advantage – 12-month LIBOR payment is less volatile than the 6-month LIBOR.

Deal 2:
• Disadvantage – Lose potential yield due to 11% cap on interest rate.
• Advantage – Good for hedging a floating rate liability (ALM) … both deals are good for this.
5. (5 points) The investment committee of a defined benefit pension plan wishes to select a new investment manager for its pension fund.

(a) Describe the selection criteria which should be considered by the investment committee.

(b) Describe the selection process.

(d) Recommend actions the investment committee should take to ensure it fulfils its fiduciary duties to the pension plan.
Question #5

(a) 1. Performance Record
 • Use market cycle (3-5 years)
 • Make sure all accounts included (not exclude lost accounts)
 • How much risk was taken to achieve return?

2. Reputation of firm and manager
 • Client satisfaction

3. Risk/Reward Characteristics
 • Risk = Standard deviation of returns

4. Investment Style (to match fund objectives)
 • Growth
 • Income
 • Balanced

5. Size of Firm
 • Benefits of small firm
 – Get more attention
 – Fewer people to communicate with
 – Trades may not affect market

 • Benefits of large firm
 – Lower transaction costs
 – Managers to review and research assets
 • Negatives – trades affect market and may not give fund attention it deserves.

6. Quality of Staff
 • Consider:
 – Turnover
 – Salary (high indicates better retention and possibly skill)
 – Education

(b) 1. Select investment objectives of fund.
2. Select investment policy
3. Send out questionnaires. Can use consultant to help prepare this and analyze date. Include questions about performance/style/firm.
4. Interview best managers who meet objectives (taking into account all selection criteria).
5. For performance measure, use entire market cycle (3-5 years). Compare to other managers with same style and risk.
6. Hire based on performance and criteria.
7. Select manager based on balance of all of the above.

(c) 1. Diversify: Assets must be diversified according to “prudent man” approach, in order to avoid losses if too much in one asset which “goes bad.”

2. Impartiality: Between participants – must not give preference to one group of participants (retirees vs. active employees). Certain investment (safe) will benefit retirees more than active. Must balance needs of all.

3. Follow Statutory Constraints
 • Allowable investments
 • Reporting methods

4. Delegate Authority but Not Responsibility: Can delegate authority to investment managers but not responsibility. Must, therefore, review their decisions/performance.

5. Coordinate between investment managers, including making sure managers are not offsetting transactions which lead to higher costs.

6. Make property productive.
6. (5 points) In 1980, the ABC High-Tech Corporation started a defined benefit pension plan for its young workforce. The plan’s investment policy, at the time, called for investing 70% of assets in stocks of large domestic corporations, 25% in real estate, and 5% in cash equivalents.

In 2000, the plan has a small surplus, and the company’s workforce consists of several long-service employees as well as some retired members. ABC now plans to introduce a defined contribution option which will offer a broad range of mutual funds and guaranteed interest investment options. Current members of the defined benefit plan will be offered a one-time opportunity either:

- To continue in the existing defined benefit option of the plan, or

- To transfer the value of the defined benefit entitlement to the defined contribution option of the plan and to start accruing future benefits in the defined contribution option.

Future new employees will only be offered the defined contribution option.

(a) Analyze the appropriateness of the existing investment policy

 (i) at inception; and

 (ii) in 2000, if the defined benefit plan were to continue for all employees.

(b) Recommend changes to the plan’s investment policy that may be needed in anticipation of the defined contribution option.
Course 6 – May 2000 – Illustrative Solutions

Question #6

(a) At inception:
 (i) At inception:
 • Since the work force is young, a more aggressive portfolio is OK.
 • Liquidity is only needed to pay out termination benefits; time horizon is long.
 However, the plan needs to make contributions and book expense so the manager should have made sure that the potential volatility of earnings compared to the aggressive nature of the investments was OK., i.e., a big loss in portfolio would require higher cash contributions and result in increased expense under FAS.
 • Additionally, this portfolio allocation may not be “prudent” or diversified enough to provide protection to fiduciaries.
 -- The fiduciaries/investment committee should have assessed the risk return profile of the company.
 • They are acting on behalf of the participants and invest so as to ensure payments of benefits.
 • Better portfolio would have some exposure to bonds (20-40% -- some high yield), more diversified equities (small cap, international), had a smaller exposure to real estate.
 • A large cash holding is not needed due to no benefit payments. Aggressive is OK; not diversified is not.

(ii) In 2000, need to dramatically change allocation due to:
 • Retirees
 • Longer service employees ready to retire with higher benefits

To pay retirees, need liquidity so cash and bonds (coupons) allocation should be increased. Can immunize or dedicate cash flows, if desired, for retiree portion to help protect/maintain surplus. Additionally, should increase bond exposure due to potentially longer-term, higher-benefit employees retiring soon. Once again, diversification is a must. What’s important to the company? Presumably, they have decided that they don’t like defined-benefit plans since switching to defined-contribution. Therefore, probably want to minimize cash and expense involved. Therefore, protecting surplus may be of utmost importance, in which case should immunize whole plan.

Summarized:
• Increased liquidity needs
• Maintenance of surplus
• Shorter time horizon
• Need to diversify.

(b) Option to transfer defined-benefit to defined-contribution plan. Consider:
• Model who will transfer (worst case?)
• Move to liquid assets.
• Raise cash.
• Shift entire portfolio from aggressive stance to conservative and diversify as well.
• Eliminate real estate, if possible, or dramatically reduce holding.
• Lock in retiree liability (dedication, immunization).
• Determine impact on surplus.

(d) Changes in investment policy with inception of DC plan:
• DB plan is remaining. However the majority of the people that stay in DB plan will be the long-service, close-to-retirement-age employees. Therefore, the investment policy needs to be revised to put a larger percentage of the assets in fixed securities (maybe GICs and some more money market instruments).
• For the DC plans. Need to have a separate investment policy. In order for fiduciary not to be held liable for diversification, need to:
 - Offer at least three investment options.
 - Allow the transfer of funds between investment options at least quarterly.
 - Provide information such as prospective on appropriate securities in accordance with Securities Act.
7. (5 points)

(a) Describe the needs of the three major clients of the financial system and the various environmental responses to these needs.

(b) With respect to the conflict between two of these major clients:

(i) Explain the nature of this conflict; and

(ii) Explain how the control structure of a firm can address this conflict and describe any associated problems.
Course 6 – May 2000 – Illustrative Solutions

Question #7

(a) **Household:** Concerned with how to invest. Investment based on diversity of risk preferences, tax situation.

Business:
- Use investments to generate money to purchase real assets through borrowing or issuing stock.
- Want best price with lowest cost – simple securities.

Government:
- Need to raise funds to finance expenditures.
- High credit worthiness allows borrowing at low rates.
- Role is requesting their financial services industry.

Environmental Responses:
- Financial Intermediaries
 - Bring together investors and borrowers.
 - Allow for pooling of money, risk diversification, financial expertise.
- Investment Bankers:
 - Design and market securities.
- Financial Innovation and Derivatives:
 - Bundling/unbundling to transform simple securities to meet demands of investors – financial re-engineering.
 - Use derivatives to hedge risks of other assets.

(b) **Agency Problems:**
- Conflict between interest of shareholders (household) and company management (business).
- Managers may not run the business in the best interest of shareholders.
- Management controls perquisites – shareholders pay for them.

Control Features:
- Can buy and sell stock at anytime.
- Voting proportional to number of shares.
- Shareholders must approve major decisions.
- Much-audited financial information must be provided to shareholders.
- Shareholders elect Board of Directors.
- Board controls management.

Problems:
- Management can become shareholders – stock options.
• Poor management is threat to shareholders – proxy fights are expensive; paid for by shareholders.
• Takeover is biggest risk of poor management – but take-over fights can be expensive to shareholders.
8. (4 points) You are given the following information about a securities market model:

- The model consists of 2 securities and a bank account.
- The bank account pays interest of 10% per year.
- The price of each security today is 100.
- There are three possible scenarios for the prices of the securities in 1 year:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Security X</th>
<th>Security Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>0</td>
<td>250</td>
</tr>
</tbody>
</table>

(a) Calculate the state price matrix for this securities market model.

(b) Calculate the risk neutral probabilities for this securities market model.

Show all work.
Question #8

Calculate ψ and Q.

Bank account pays 10%.

(a) \[110\psi_1 + 110\psi_2 + 110\psi_3 = 100 \]

\[220\psi_1 + 55\psi_2 + 0\psi_3 = 100 \]

\[0\psi_1 + 0\psi_2 + 250\psi_3 = 100 \Rightarrow \psi_3 = 0.40 \]

\[\frac{100 - 55\psi_2}{220} = \psi_1 \]

\[110\left(\frac{100 - 55\psi_2}{220}\right) + 110\psi_2 + 110(0.4) = 100 \]

\[50 - 27.5\psi_2 + 110\psi_2 + 44 = 100 \]

\[82.5\psi_2 = 6 \]

\[\psi_2 = \frac{12}{165} = \frac{4}{55} \]

\[\psi_1 = \frac{100 - 55\left(\frac{4}{55}\right)}{220} = \frac{96}{220} = \frac{24}{55} \]
State price vector if \(\sum \psi_i = \frac{1}{1+i} \) and all strictly positive.

\[
\psi_1 + \psi_2 + \psi_3 = \frac{24}{55} + \frac{4}{55} + \frac{22}{55} = \frac{50}{50}
\]

\[
\frac{1}{1+i} = \frac{1}{1.1} = \frac{50}{55}
\]

The state price vector is \(\psi = \left[\begin{array} {l} \psi_1 \psi_2 \psi_3 \end{array} \right] = \left[\begin{array} {ccc} 24 & 4 & 22 \\ 55 & 55 & 55 \end{array} \right] \).

(b) Since the state price vector exists, the risk neutral probabilities also exist.

\[
Q = (1+i)\psi
\]

\[
= (1+0.10) \left[\begin{array} {ccc} 24 & 4 & 22 \\ 55 & 55 & 55 \end{array} \right]
\]

\[
= \left[\begin{array} {ccc} 24 & 4 & 22 \\ 50 & 50 & 50 \end{array} \right]
\]

\[
\sum Q = 1 = \frac{24}{50} + \frac{4}{50} + \frac{22}{50}
\]

.: the risk neutral probabilities are \(Q = \left[\begin{array} {ccc} 24 & 4 & 22 \\ 50 & 50 & 50 \end{array} \right] \).
9. (8 points) OURFSA.com, a private internet company, has an initial public offering (IPO) on January 1st at a price of $50 per share. On January 31st, the price falls to $30 per share. No dividends

Investors A and B each invest $12,000 on January 1st.

- Investor A purchases the maximum number of shares of OURFSA.com on margin at the IPO price. The maintenance margin is 35%.

- Investor B sells short the maximum number of shares of OURFSA.com on margin at the IPO price. The short position maintenance margin is 40%.

- Assume no interest on the margin loans.

- Assume the maximum margin for both investors is 50% at purchase.

(a) Describe commonly used methods to underwrite an IPO.

(b) Explain how the IPO price is typically determined.

(c) Describe the margin process for stock purchases and short sales.

(d) Quantify alternative actions investor A may take on January 31st to meet the margin call.

(e) Determine the value the stock price should strike in order for investor B to receive a margin call.

Show all work.
Course 6 – May 2000 – Illustrative Solution

Question #9

(a) Common Methods of IPO Underwriting:
- Firm Commitment – Investment bank actually buys the shares from the issuing company, then resells them in the market.
 - Risk is assumed by the investment banker in exchange for a spread between the price they buy at and the price they sell at.
 - IPO price will tend to be low for safety.
- Best Efforts – Investment bank doesn’t actually buy the shares, just help market it to potential investors.
 - Issuing firm holds risk if not all shares are sold.
 - No spread, so investment bank makes money from commissions and fees.
 - Investment bank (or multiple) provide expertise in setting the share price.

(b) Determination of IPO Price:
- Syndicate of investment bankers is formed (one is the leader)
- Based on road show interest from potential investors, current market conditions, and their expertise with similar situations, they suggest a price.
- Factors include: economy; perceived interest; market conditions.
- Can be constantly changing, right up to the time of the IPO.
- Price is a trade-off
 - If too high, not all shares will sell (bad if firm commitment).
 - If too low, issuing company won’t raise as much money.
- IPO prices have tended to be underpriced.

(c) The Margin Process:
- For Long Purchases:
 - Shares are bought with a combination of the investor’s money and a margin loan.
 - Initial margin is a set limit, 50%.
 - From that time on, the margin percentage = Equity/Market Value.

\[
\text{Equity} = (\text{Market Value of the Stock}) - (\text{Initial Loan Amount})
\]
 - Margin call if margin percentage drops below the required maintenance margin.

- For Short Sales:
 - Shares are sold with the proceeds from the sale adding to equity while the market value of the stock is subtracted.
Equity = \left(\frac{\text{Market Value of Long Stock}}{} \right) + \left(\frac{\text{Initial Proceed}}{} \right) - \left(\frac{\text{Market Value of Short Stock}}{} \right)

\text{Margin \%} = \left(\frac{\text{Equity}}{\text{Market Value of Short Stock}} \right)

The initial short position requires that the initial account value (long stock or cash) be a minimum percentage (50\%) of the stock being sold short.

(d) Alternative Actions when Faced With A Margin Call:

• Investor A could add cash (make a deposit) to his account to bring the margin % up to 35\%.

Investor A has 480 shares with a margin loan of $12,000.

\[
\text{Margin \%} = \frac{480(30) - 12,000}{480(30)} = \frac{2400}{14,400} = 16.6\%
\]

\[
14,400 \times 0.35 = 5040 - 2400 = 2640
\]

Must add $2,640.

• Or he could sell some of his shares until his margin % was at least 35\%.

(e) \[\text{Margin \%} = \frac{12,000 + 24,000 - \text{MV of Short Stock}}{\text{MV of Short Stock}} \]

Maintenance Margin = 40\%.

\[
0.40 = \frac{36,000}{\text{Stock price}} = \frac{480}{\text{stock price}}
\]

\[
\frac{192}{\text{Stock price}} = 36,000 + \frac{480}{\text{Stock price}}
\]

\[
\frac{672}{\text{Stock price}} = 36,000
\]

Stock price = $53.57.

Investor B will get a margin call if stock price rises to $53.57.
10. (7 points)

(a) (2 points) Describe the key features of the following securities:

(i) Floating rate notes;
(ii) Principal Only (PO) strips; and
(iii) High yield securities.

(b) (5 points) Analyze the suitability of using these securities to support a five-year GIC with an option to surrender at book value if interest rates change.
Course 6 – May 2000 – Illustrative Solution

Question #10

(a)

(i) Floating Rate Notes:
- Coupon payments vary with short-term index.
- Usually contain puts.
- Better when interest rates or index go up because coupons will be reset based on index.

(ii) Principal Only Strips:
- For MBS, these are securities that are based only on principal payments (interest portion stripped off)
- Very risky
- Good if pre-payments are high because principal will be returned faster.
- Bought at a discount.

(iii) High-Yield Securities:
- Very risky
- Usually unsecured
- Great potential profit, but also great risk.

Examples:
- High-yield bank loans
- Regular, fixed-interest loans – High coupon (“Plain vanilla”)
- Rule 144A, (illegible) companies to sell debt and private placement before registering with SEC
- Bond/stock warrant.

NOTE: “Warrant” option usually to buy stock from a company – company creates new shares.
- Extendible securities
- Split coupon – (No interest in first year)
- Payment in-kind (Pay in debt)
- Step-up.

(b) Support a 5-Year GIC with Option to Surrender if Interest Rates Change.

Floating Rate Notes:
- If interest rates go up, people will surrender GICs or avoid buying to invest in better
yielding securities.
- Floating rate will allow you to credit higher rates on new GICs if based on interest rate market.

- Concerns with Security:
 - For a GIC, it would be better to lock in a fixed rate above the crediting rate, rather than buy a floating rate.
 - Safety Net: If interest rates drop below crediting rate, individual will not surrender GIC and company will credit more than it will earn.

- Principal-Only Strips:
 - If interest rates drop, more people will refinance, causing yield to go up.
 - If interest rates go up, less will refinance, causing less of a return.

- Analyze Advantage:
 - If interest rate drops, GICs will not be surrendered and high yields will be earned.
 - Good scenario.

- Analyze Disadvantage:
 - If interest rates increase, GIC will be surrendered and might raise liquidity concerns and lack of earnings.
 - Since GICs are mostly risk adverse, PO might be too risky.

- High-Yield Securities (Concerns with using high-yield)
 - High risk might not be adequate for GIC
 - Uncertain return and large risk might not meet GIC crediting rate.
 - Liquidity might be poor if large numbers of GICs are surrendered and high-risk securities are defaulting.
 - Delayed interest payments of some high-yield securities could cause losses between earned rate and crediting rate of GIC.
11. *(4 points)* Describe viewpoints with respect to the strategy of purchasing common stocks with a low price to earnings ratio (P/E) in order to outperform the stock market over the long term.
Course 6 – May 2000 – Illustrative Solutions

Question #11

I. Studies have shown that low P/E stocks have higher returns than high P/E stocks over long holding periods.

II. Analysis from EMH Viewpoint
 • Observed out-performance held true even if returns adjusted for Beta → P/E may act as additional descriptor of risk.
 • This result would appear to violate the EMH.

III. Analysis from Dreman Viewpoint
 • Investor overreaction hypothesis – Investors overvalue best stocks (high P/E) and undervalue worst stocks (low P/E).
 • Analysis forecasts poor due to:
 - Tendency to extrapolate from past earnings
 - Behavioral influences
 - Peer and institutional pressures.
 • Trigger events – great positive impact on low P/E stocks
 - Positive earnings surprise for low P/E stocks
 - Negative earnings surprise for high {P/E stocks).
 • Reinforcing even – small impact on low P/E stocks
 - Negative earnings for low P/E stocks
 - Positive earnings surprise for high P/E stocks.
12. (7 points) Given the following information:

- Annual coupon on the bond $= 6.00\%$
- The lower one-year rate one year forward $= 5.75\%$
- Volatility $= 15.00\%$
- Option-adjusted spread (OAS) $= 25$ basis points

(a) Determine the current market price of a 2-year on-the-run putable bond, issued today using the binomial lattice model.

(b) Compare how modified duration and effective duration measure the sensitivity of this bond to changes in interest rates.

Show all work.
Question #12

(a) \[V_u = \frac{106}{r_u} = 7.76\% \]

\[V_0 = 100 \]

\[r_0 = 5.75\% \]

\[V_L = \]

\[r_L = \]

\[r_v = \]

\[Par = 100 \]

Coupon = 6

\[\text{Constant spread to add to all rates.} \]

\[OAS = 0.25\% = \text{Constant spread to add to all rates.} \]
\[V_H = \frac{106}{1.0801} = 98.14 \]
\[V_L = \frac{106}{1.06} = 100.00 \]
\[V_0 = 0.5 \left(\frac{100 + 6 + 100 + 6}{1.055} \right) = \$100.43 \text{ Market Price} \]

But this is <100. \therefore put option will be exercised set value to 100.

(b) **Modified Duration**

- Measures sensitivity of bond’s price to changes in yield to maturity.
- Assumes yield curve is flat.
- Assumes cash flows independent of interest rates.

This bond is “putable” with cash flows that change with changes in interest rates. Therefore, modified duration is an inappropriate measure for this bond.

Effective Duration

This is the correct measure for this bond as it compensates for cash flows that change due to interest rate changes.
13. (6 points) With respect to the operations of a life insurance company:

(a) Describe liquidity.

(b) Outline the elements of a sound liquidity management program.

(c) Identify specific events that could strain a company’s liquidity level.

(d) Outline the actions that a company may take to manage a liquidity stress situation.
Course 6 – May 2000 – Illustrative Solutions

Question #13

(a) Liquidity is the ability to meet normal and adverse cash needs without problems, that is, without affecting surplus too much or losing too much value on the sale of securities.

(b) • Separate assets and liabilities.
 • Assets available in one day/one month.
 • Liabilities required in one day/one month.
 • Use the maximum required and minimum available.
 • Net assets available = assets available – liabilities required.

 \[\text{Liquidity Ratio} = \frac{\text{Net Assets Available}}{\text{Total Liquidity Needs}} \]

 • Evaluate under normal circumstances and under stress.

(a) Company-specific events:
 • Downgrade of the company by rating agencies – Policyholders will go get their money back, which will only make the situation worse.
 • Rumor of financial problems (even if false) – same problem as above.
 • Loss of a source of revenue/liquidity.
 • Reports below expectations (i.e., reported earnings or dividend). – Investors will think company is in trouble.

Industry-wide events:
 • Problem with a big insurance company – Policyholders will be concerned.
 • Perceived problems with a certain product – Everyone will want to get money out of this product in all companies.
 • Sudden change in customer demand – Companies need time to adjust themselves.
 • Macro-level economic and political instability – A change in the regulatory environment could cause problems.

(b) Sources of cash:
 • Existing cash position.
 • Short-term securities in money market.
 • Issuance of commercial paper.
 • Get a line of credit with bank – Might be refused if company has real problems.
 • Sell marketable securities.
 • Securitize unmarketable securities.
 • Repurchase agreements.
• Cash flow from operations.
Company could also ad to its policies:
• Surrender fees.
• Surrender values adjusted to market.
• Delays in GICs.

Can also use reinsurance, offer separate account for concerned DC plan participants – polling and selling private placements.

Most important:
• Keep regulators and rating agencies informed regularly.
• Control public view of situation.
• Inform agents.
14. (4 points) You are given the following yield curve graphs:

(1) Yield (%)
Maturity (years)

(2) Yield (%)
Maturity (years)

(3) Yield (%)
Maturity (years)

Explain each of these yield curves under the following hypotheses:

(a) Liquidity premium;

(b) Pure or unbiased expectations; and

(c) Market segmentation.
Course 6 – May 2000 – Illustrative Solutions

Question #14

(a) Liquidity premium hypothesis:

- Long-term bonds have a higher duration and, therefore, they are more sensitive to interest rate changes.
- Investors require a liquidity premium to accept this higher level of risk.
- The liquidity premium increases with maturity but at a decreasing rate.

 Graph 1: Hypothesis gives no explanation.
 Graph 2: Hypothesis gives no explanation.
 Graph 3: As maturity increases, the liquidity premium increases but at a decreasing rate.

(b) Pure or unbiased expectations:

- Forward interest rates are shown in spot rates:

 \[
 S_t = f_0 \\
 (1 + S_t)^2 = (1 + f_0)(1 + f_1) \\
 (1 + S_t)^3 = (1 + f_0)(1 + f_1)(1 + f_2)
 \]

- Investors expect the same return from differing maturity strategies.
- Graph 1: Future interest rates will increase and then decrease.
- Graph 2: Future interest rates will decrease.
- Graph 3: Future interest rates will increase.

(c) Market Segmentation:

Graph 2:

- Investors have their segment that they prefer and they cannot be drawn from it.
- Hypothesis acknowledges some overlap between ST investor (banks) and long-term investors (insurance companies).
- ST rates are more volatile.
- Banks prefer to borrow money to individuals and business and will invest only the excess.
- When economy is doing well, business borrow from banks. Banks have little excess funds to invest, which increases supply of ST investments, which increases rates relative to LT – Banks have less money to invest than insurance companies.
Graph 3:
• When economy slacks off:
 - Less borrowing (loans being paid off)
 - Banks have more money to invest in ST securities
 - Decreases supply
 - Increases security prices and decreases ST yields w/change to LT.
• Banks have more money to invest than insurance companies.

Graph 1:
• Banks and insurance companies have about the same amount of money to invest, but there is a void in the investing market.

** END OF EXAMINATION 6 **
COURSE 6
MORNING SESSION

FINANCE AND INVESTMENTS

SECTION B—MULTIPLE CHOICE
1. You are given the following information:

<table>
<thead>
<tr>
<th>Total value of the stock purchased</th>
<th>$20,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage margin</td>
<td>75%</td>
</tr>
<tr>
<td>Increase in stock price for the period</td>
<td>25%</td>
</tr>
<tr>
<td>Interest rate on margin loan for the period</td>
<td>9%</td>
</tr>
<tr>
<td>Dividends paid for the period</td>
<td>None</td>
</tr>
</tbody>
</table>

Determine the rate of return to the investor.

(A) 22.75%

(B) 30.33%

(C) 50.00%

(D) 66.67%

(E) 73.00%
USE THIS PAGE FOR YOUR SCRATCH WORK
2. You are given the following semi-annual spot rates:

\[S_1 = 6.00\% \]
\[S_2 = 6.75\% \]
\[S_3 = 7.33\% \]
\[S_4 = 8.00\% \]

Calculate the one-year implied forward rate for the second year.

(A) 7.5%
(B) 9.3%
(C) 9.7%
(D) 10.0%
(E) 10.4%
3. You are given the following with respect to a bond with semi-annual coupon payments priced to yield 8%:

<table>
<thead>
<tr>
<th>Semi-Annual Period (t)</th>
<th>Payment</th>
<th>Present Value of Payment at Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.00</td>
<td>2.89</td>
</tr>
<tr>
<td>2</td>
<td>3.00</td>
<td>2.78</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>2.67</td>
</tr>
<tr>
<td>4</td>
<td>3.00</td>
<td>2.57</td>
</tr>
<tr>
<td>5</td>
<td>3.00</td>
<td>2.47</td>
</tr>
<tr>
<td>6</td>
<td>103.00</td>
<td>81.76</td>
</tr>
</tbody>
</table>

Calculate the convexity of the bond.

(A) 1.29
(B) 1.58
(C) 8.78
(D) 9.50
(E) 17.56
4. You are given the following information with respect to a particular investor’s utility function:

\[U = E(r) - 0.01A\sigma^2 \]

\[E(r) = 15\% \]

\[A = 4 \]

\[\sigma = 25\% \]

Risk free rate = 6\%

Calculate the difference between:

(i) the proportion of the investor’s budget which will be invested in the risk free asset in order to maximize the investor’s utility value; and

(ii) the reward to variability ratio.

(A) 22\%

(B) 28\%

(C) 36\%

(D) 46\%

(E) 82\%
5. You are given the following:

<table>
<thead>
<tr>
<th>Investment</th>
<th>E(r)</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>30</td>
</tr>
</tbody>
</table>

\[U = E(r) - 0.005A\sigma^2 \]

\[A = 2 \]

Determine which investment a risk-neutral investor would purchase.

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5
USE THIS PAGE FOR YOUR SCRATCH WORK
6. Rank the following bonds based on the order of protection against early redemption (from greatest to least). All redemptions are at par value.

I. Non-callable for 5 years, callable thereafter

II. Callable immediately

III. Non-refundable for 5 years, refundable thereafter

IV. Callable immediately, non-refundable for 5 years

(A) I > III > II > IV

(B) I > III > IV > II

(C) I > IV > III > II

(D) III > I > II > IV

(E) III > I > IV > II
7-10. Each of questions 7 through 10 consists of an assertion in the left-hand column and a reason in the right-hand column. Code your answer to each question by blackening space:

(A) If both the assertion and the reason are true statements, and the reason is a correct explanation of the assertion.

(B) If both the assertion and the reason are true statements, but the reason is NOT a correct explanation of the assertion.

(C) If the assertion is a true statement, but the reason is a false statement.

(D) If the assertion is a false statement, but the reason is a true statement.

(E) If both the assertion and the reason are false statements.

7. **ASSERTION**
 With respect to GIC portfolio management, a market-timing approach is likely to enhance returns.

 REASON
 BECAUSE There is a large potential market value gain to a GIC fund by buying GICs when interest rates peak and subsequently fall.

8. **ASSERTION**
 SEC Rule 144A is a popular financing technique in the high yield market.

 REASON
 BECAUSE SEC Rule 144A allows issuers quick access to the market by initially selling the securities in a private placement transaction to underwriters.
9. **ASSERTION**
 The price of a floating-rate note that contains a put feature is more volatile than the price of a floating-rate note without a put feature.

 REASON
 BECAUSE A put feature in a floating-rate note allows the purchaser to require the issuer to repurchase the note at a specified price.

10. **ASSERTION**
 The volatility of a bond’s price is closely associated with its term-to-maturity.

 REASON
 BECAUSE An increase in the market level of interest rates will have a much larger effect on the price of a short-term bond than on a long-term bond.
11. A fixed-rate collateralized mortgage obligation (CMO) companion class with a face amount of $300 million and a coupon of 8% is divided into a floater and an inverse floater.

The floater has a face amount of $200 million and a coupon of LIBOR+50 basis points with a cap of 10%.

Determine which of the following represents the coupon formula for the inverse floater.

(A) 15.5% - LIBOR, 6% floor
(B) 15.5% - LIBOR, 4% floor
(C) 23.0% - 2 x LIBOR, 4% floor
(D) 23.0% - LIBOR, 4% floor
(E) 24.0% - 2 x LIBOR, 6% floor
12-15. Each of questions 12 through 15 consists of two lists. In the list at the left are two items, lettered X and Y. In the list at the right are three items, numbered I, II, and III. ONE of the lettered items is related in some way to EXACTLY TWO of the numbered items. Indicate the related items using the following answer code:

<table>
<thead>
<tr>
<th>Lettered Item</th>
<th>Is Related to Numbered Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) X</td>
<td>I and II only</td>
</tr>
<tr>
<td>(B) X</td>
<td>II and III only</td>
</tr>
<tr>
<td>(C) Y</td>
<td>I and II only</td>
</tr>
<tr>
<td>(D) Y</td>
<td>I and III only</td>
</tr>
<tr>
<td>(E)</td>
<td>The correct answer is not given by (A), (B), (C) or (D).</td>
</tr>
</tbody>
</table>

12. X. Z bond

Y. Accretion-directed bond

<table>
<thead>
<tr>
<th>Lettered Item</th>
<th>Is Related to Numbered Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>No reinvestment risk during the accretion phase</td>
</tr>
<tr>
<td>II.</td>
<td>Offers a higher yield than a comparable weighted average life (WAL) Treasury zero</td>
</tr>
<tr>
<td>III.</td>
<td>The average life does not extend even if there are no prepayments</td>
</tr>
</tbody>
</table>
13. **X.** Gross weighted average coupon (WAC)
 I. Average of the interest rates before adjusting for the service fee
 Y. Weighted average loan age (WALA)
 II. Approximated by taking the original term of the security and subtracting the weighted average maturity value
 III. A better indicator of prepayment potential than the net coupon of the collateral

14. **X.** Spot rates
 I. Single period rates
 Y. Forward rates
 II. Yield to maturity on zero-coupon Treasury bonds
 III. Term structure of these rates exhibits sharper and more sudden changes

15. **X.** High yield securities
 I. Fixed interest rates
 Y. High yield bank loans
 II. Callable immediately
 III. More restrictive covenants
16. Immunization techniques assume parallel yield-curve shifts.
 (A) True
 (B) False

17. The duration of a pool of liabilities is equal to the market-value-weighted average duration of the individual liability components.
 (A) True
 (B) False

18. Convexity and aging of the insurance liability cash flows are the two primary factors which contribute to the changes in insurance liability durations.
 (A) True
 (B) False
19. The objective of an asset allocation analysis is to find the asset mix that provides the best expected return on the investments.

 (A) True
 (B) False

20. The aggregate company risk based capital (RBC) is the sum of the individual RBC risk components.

 (A) True
 (B) False

21. The covariance factor in the risk based capital (RBC) formula can mitigate the effect of reducing the risk components.

 (A) True
 (B) False
22. You have purchased a 20-year bond with a yield-to-maturity of 10% and a duration of 12 years. Immediately after your purchase, there is a shock to interest rates which shifts the yield-to-maturity of the bond to 12% and the duration of the bond to 11 years.

Assuming that the new interest rates persist indefinitely, determine the minimum holding period from the purchase date to earn at least 10%.

(A) 0 years

(B) 11 years

(C) 12 years

(D) 20 years

(E) No holding period will earn 10%
23. You are given the following information:

Market value of portfolio X = $10.0 million
Modified duration of portfolio X = 6
Modified duration of portfolio Y = 4

Portfolio Y has a dollar duration equal to the dollar duration of portfolio X.

Calculate the market value of portfolio Y.

(A) $6.7 million
(B) $10.0 million
(C) $15.0 million
(D) $40.0 million
(E) $60.0 million
USE THIS PAGE FOR YOUR SCRATCH WORK
24. You are given the following information with respect to an active/immunization combination strategy for a fixed-income portfolio:

Immunizable target return = 8%
Minimum return = 5%
Worst case active return = 2%

Calculate the active component of this portfolio that will ensure the minimum return.

(A) 37.5%
(B) 40.0%
(C) 50.0%
(D) 62.5%
(E) 83.3%
25-27. Each question 25 through 27 consists of an assertion in the left-hand column and a reason in the right-hand column. Code your answer to each question by blackening space:

(A)	If both the assertion and the reason are true statements, and the reason is a correct explanation of the assertion.
(B)	If both the assertion and the reason are true statements, but the reason is NOT a correct explanation of the assertion.
(C)	If the assertion is a true statement, but the reason is a false statement.
(D)	If the assertion is a false statement, but the reason is a true statement.
(E)	If both the assertion and the reason are false statements.

<table>
<thead>
<tr>
<th>ASSERTION</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>The risk based capital (RBC) formula rewards pooling credit risks and insurance risks.</td>
<td>BECAUSE Diversifying the bond portfolio may enhance the risk based capital (RBC) ratio of the company.</td>
</tr>
</tbody>
</table>
26. **ASSERTION**
An investment can be prudent even if it exhibits high volatility and low expected return.

REASON
BECAUSE Prudent investment decisions must be viewed on the basis of their effects on the portfolio as a whole.

27. **ASSERTION**
Insured asset allocation analysis assumes that the investor’s risk tolerance is unchanged over time.

REASON
BECAUSE Insured asset allocation analysis procedures are intended to adapt long term results to an investor’s objectives without market timing.
28. This question consists of two lists. In the list at the left are two items, lettered X and Y. In the list at the right are four items, numbered I, II, III and IV. EACH of the lettered items is related in some way to EXACTLY TWO of the numbered items. Match the lettered items (X and Y) with the numbered items (I, II, III, and IV) shown below.

Indicate the related items using the following answer code:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>I and II</td>
<td>III and IV</td>
</tr>
<tr>
<td>(B)</td>
<td>I and III</td>
<td>II and IV</td>
</tr>
<tr>
<td>(C)</td>
<td>I and IV</td>
<td>II and III</td>
</tr>
<tr>
<td>(D)</td>
<td>II and III</td>
<td>I and IV</td>
</tr>
<tr>
<td>(E)</td>
<td>II and IV</td>
<td>I and III</td>
</tr>
</tbody>
</table>

X. Strategic asset allocation

Y. Tactical asset allocation

I. Investment manager explicitly tries to outperform the market

II. Concerned with setting a normal long-term asset mix

III. Investment manager responds when one asset class has moved to a valuation well outside its historical range

IV. Frequent shifts between asset classes
29-30. Each question 29 through 30 consists of two lists. In the list at the left are two items, lettered X and Y. In the list at the right are three items, numbered I, II, and III. ONE of the lettered items is related in some way to EXACTLY TWO of the numbered items. Indicate the related items using the following answer code:

<table>
<thead>
<tr>
<th>Lettered Item</th>
<th>Is Related to Numbered Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) X</td>
<td>I and II only</td>
</tr>
<tr>
<td>(B) X</td>
<td>II and III only</td>
</tr>
<tr>
<td>(C) Y</td>
<td>I and II only</td>
</tr>
<tr>
<td>(D) Y</td>
<td>I and III only</td>
</tr>
<tr>
<td>(E)</td>
<td>The correct answer is not given by (A), (B), (C) or (D).</td>
</tr>
</tbody>
</table>

29. X. Capitalization-weighted equity market index
 Y. Capitalization-weighted bond market index

I. Dow Jones Industrial Average
II. Standard & Poor’s 500 Index
III. Wilshire 5000 Index

30. X. Macaulay duration
 Y. Option-adjusted duration

I. Accounts for interest sensitive cash flows
II. Biased upward for SPDAs
III. Average present-value-weighted maturity of the cash flow stream
31. A multi-period securities market model can be arbitrage free even if some component single period models are not arbitrage free.

 (A) True

 (B) False

32. For two bond portfolios with equal market value and equal duration, if short term interest rates increase and long term interest rates decrease, the value of the “bullet” bond portfolio would increase less than the value of the “barbell” bond portfolio.

 (A) True

 (B) False
33. All of the following are used to determine the payoff of a “Cap” at a payment date, except:

(A) Index level
(B) Notional amount
(C) Number of days in the period
(D) Frequency of payment
(E) Strike level
34. Given that:
\[S(i) = \sum_{t>0} \frac{A_t}{(1+i)^t} - \sum_{t>0} \frac{L_t}{(1+i)^t}. \]

Define the essence of Reddington’s immunization strategy.

(A) \(S(i) = 0 \)

(B) \(S'(i) > 0 \)

(C) \(S'(i) = 0 \)

(D) \(S''(i) > 0 \)

(E) \(S''(i) = 0 \)
35. Given the following information:

- The following derivatives have the same payment date.
- LIBOR is 9% at the settlement date.

Rank in ascending order (lowest to highest) the value of a single payment of the following derivatives.

I. A floor indexed on LIBOR plus 50 basis points, strike price 11%, notional amount $100,000
II. A collar indexed on LIBOR plus 100 basis points, strike prices 8% and 11%, notional amount $100,000
III. A cap indexed on LIBOR plus 50 basis points, strike price 8%, notional amount $125,000
IV. A corridor indexed on LIBOR plus 0 (zero) basis points, strike prices 8% and 11%, notional amount $200,000

(A) I < IV < III < II
(B) II < I < III < IV
(C) II < III < IV < I
(D) IV < I < II < III
(E) IV < II < I < III
USE THIS PAGE FOR YOUR SCRATCH WORK
36-40. Each question 36 through 40 consists of an assertion in the left-hand column and a reason in the right-hand column. Code your answer to each question by blackening space:

(A) If both the assertion and the reason are true statements, and the reason is a correct explanation of the assertion.

(B) If both the assertion and the reason are true statements, but the reason is NOT a correct explanation of the assertion.

(C) If the assertion is a true statement, but the reason is a false statement.

(D) If the assertion is a false statement, but the reason is a true statement.

(E) If both the assertion and the reason are false statements.

<table>
<thead>
<tr>
<th>ASSERTION</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>36. A callable bond will trade at a higher price than a comparable optionless bond.</td>
<td>BECAUSE The price appreciation potential of a callable bond is limited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASSERTION</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>37. Asset default risk does not contribute to interest rate risk.</td>
<td>BECAUSE An asset default results in the loss of all future cash flows.</td>
</tr>
<tr>
<td>ASSERTION</td>
<td>REASON</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>38. There is interest rate risk present if a company’s investment strategy allows trading between different sectors of a fixed income market.</td>
<td>BECAUSE Interest spreads between different securities within a particular sector of the market may change over time.</td>
</tr>
<tr>
<td>39. The investment strategy used in C-3 testing has a limited number of choices.</td>
<td>BECAUSE Interest rate generators used for interest rate risk analysis are arbitrage free.</td>
</tr>
<tr>
<td>40. A valuation model used for mortgage backed securities is often adjusted by adding at each node an option-adjusted spread (OAS) to the short rates.</td>
<td>BECAUSE Many mortgage borrowers do not optimally exercise their privilege to refinance their loans.</td>
</tr>
</tbody>
</table>
41-42. Each question 41 through 42 consists of two lists. In the list at the left are two items, lettered X and Y. In the list at the right are three items, numbered I, II, and III. ONE of the lettered items is related in some way to EXACTLY TWO of the numbered items. Indicate the related items using the following answer code:

<table>
<thead>
<tr>
<th>Lettered Item</th>
<th>Is Related to Numbered Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) X</td>
<td>I and II only</td>
</tr>
<tr>
<td>(B) X</td>
<td>I and III only</td>
</tr>
<tr>
<td>(C) Y</td>
<td>I and II only</td>
</tr>
<tr>
<td>(D) Y</td>
<td>II and III only</td>
</tr>
<tr>
<td>(E)</td>
<td>The correct answer is not given by (A), (B), (C) or (D).</td>
</tr>
</tbody>
</table>

41. In the Orstein-Uhlenbeck mean reverting process:

X. The drift term
Y. The variance term

I. The diffusion process.
II. The long run equilibrium rate of interest.
III. The measure of interest rate volatility.
42. X. Real estate investment
 I. Volatility of return is often uncorrelated to interest rate volatility.

 Y. Fixed income derivative
 II. May be appropriate for investment of surplus assets.

 III. Useful for correcting asset-liability mismatch positions.

** END OF EXAMINATION 6 **
MORNING SESSION
Course 6
May 2000

Multiple-Choice Answer Key

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAY 2000

COURSE 6
MORNING SESSION

FINANCE AND INVESTMENTS

SECTION A—WRITTEN ANSWER

ILLUSTRATIVE SOLUTIONS
Course 6 – May 2000 – Illustrative Solutions

Question #1

(a)
(i) \[= 40(1.06)^3 + 40(1.06)^2 + 40(1.06) + 40 = $174.98 \]

(ii) \[\text{MV of Bond} = \frac{40}{1.06} + \frac{40}{(1.06)^2} + \frac{40}{(1.06)^3} + \frac{1040}{(1.06)^4} = $930.70 \]

(iii) \[\text{Total Return} = \text{Capital appreciation} + \text{Accumulated interest} \]
\[= -69.3 + 174.98 = 105.68 \]
\[\% \text{ Return} = \left(\frac{105.68}{1000} \right) = 10.57\% \]
\[\text{Annual Eff. Yield} = (1.1057)^{\frac{1}{4}} - 1 = 2.54\% \]

(b) Total Annual Return is less than original yield due to the increase in interest rates and the positive duration of the bond.

The increase in reinvestment returns somewhat offset the decrease in market value.

The longer the holding period, the better the return would have been.

If held for 7 years (duration of bond) the increased reinvestment returns would have exactly offset the decrease in market value and given you the initial return of 4% annual.
Question #2

(a) Cash-Flow Matching

- This is the process by which we have an asset maturing (payable) to use at the same time as our liability is due.
- Can be a difficult task matching all cash flows.
- May have to rebalance if asset defaults.

To do this, you must understand:

(i) Nature of your liabilities
- In order to cash-flow match, you’d have to know what liabilities you have, when they are payable, the amount.
- Example would be a group of retired lives (pensioners). We know that we have to pay them off each month and the amount is usually fixed.
- This could also be used for a block of defined vesteds. You know when they will retire and how much they will receive.
- Difficult to apply to an active group.

(ii) Constraints of cash-flow matching
- Call risk. If you are backing your liabilities with callable bonds and they get called, you may not have sufficient funds to pay them off.
- Type of issuer.
- Diversification. Thus, if the sector or group of securities happens to default, you won’t lose considerable money and be unable to make payments.
- Credit. You want to have good credit securities backing your assets to prevent default risk.
- Liquidity. Need liquidity in order to make any required payment.

(iii) Cash Flow
- The cash flow on your assets will be value of assets at beginning + interest income + reinvestment income = required payment.

(iv) Reinvestment Rate
- The rate which you assumed your asset cash flows will be reinvested at.
- Need to be conservative to ensure the payments of liabilities. If we have an aggressive reinvestment rate, we may not have enough assets to pay for liabilities.

(v) Optimization Techniques
- We could use some sort of linear programming to ensure that we have the optimal
combination to pay off our liabilities.
- Quadratic programming.
- Stepwise regression.

(vi) Pricing the Bonds
- If we've supported our assets with bonds, it's important to ensure that they are priced correctly. We may want to get an independent firm to assist with the pricing.
- Defaults are the most important concern.
- Downgrades.

(vii) Re-optimization
- Assets default, or
- Our liabilities cash flow changes (e.g., if a pensioner dies) it may be necessary to rebalance our cash-flow matching.

(viii) Active Management
- There is some active management in cash-flow matching, as if we can find another security with the same characteristics as our current security, yet with a higher yield, we would definitely switch to the higher yielding security.

(b) Combination Strategies

(i) Active/Passive. Here we may have a portion of our portfolio which we will actively manage and another portion which we’ll be passive with \(\rightarrow \) (use index funds or adopt a buy-and-hold strategy).

(ii) Active/Immunization
- Have an active portion and another percentage you immunize.
- Immunize by:

\[
P(V(\text{Assets}) \geq P(V(\text{Liabilities}))
\]

\[
\text{Duration (Asset)} = \text{Duration (Liabilities)}
\]

(iii) Contingent Immunization. Here we have a lower bound for our return and as soon as that lower bound is reached, we switch our portfolio to a completely immunized portfolio from a completely active portfolio.

(iv) Horizon Strategies. Here we use cash-flow matching up to the "horizon" and then immunize the portfolio from the "horizon" point on.
(v) Combination by Formula. We calculate the active percentage in our portfolio by the following formula:

$$\frac{(ITR - MR)}{ITR - WC}$$

ITR = Immunization target return.
MR = Minimum rates.
WC = Worst-case return.

(vi) Multiple Asset Performance.
- This is when we select the assets that are performing the best.
- Involves many transactions.
- The strategy will involve buying calls to purchase the different assets.
- Involves market timing.
- Switch from current portfolio to a higher yielding one.
Course 6 – May 2000 – Illustrative Solutions

Question #3

(a) Immunization involves matching duration of assets and liabilities.
 (i) By matching the effective duration of the asset and the liabilities, the market value of assets and liabilities will respond with the same sensitivity toward interest rates change and hence, its surplus will be immunized.
 (ii) Three conditions need to be met to immunize this block of multiple liabilities:
 - Effective duration of assets = effective deviation of liabilities.
 - Present value of assets = Present value of liabilities
 - Dispersion of assets > Dispersion of liabilities.

(b) Bond indexing compared to immunization:
 - Bond indexing minimizes expectational inputs because it is a form of passive management.
 - Bond indexing tries to match its rate of return to that of the index.
 - Compared to immunization, bond indexing gives the company a greater control over its investment managers: it also lowers advisory and non-advisory fees.
 - Transaction costs are lower because bond indexing involves mostly buy-and-hold, whereas immunization requires frequent transaction to rebalance the asset and liability duration.
 - However, bond indexing limits the selection of securities because the investment manager is limited to the securities that are present in the index. On the other hand, immunization has no such restriction (except those placed by the company itself) and managers can take advantage of the more attractive assets in the market.
 - There is always a danger that even though the portfolio return is matched to the bond index, it is not sufficient to meet the company’s objectives. Bond indexing may not be the optimal portfolio.
 - But there are disadvantages in immunization, e.g., it only assumes parallel yield changes, it requires frequent transactions, it focuses on instantaneous price change instead of future liability value.

(c) Organization Issues
 (1) ALM Process
 - The assets and liabilities should be coordinated effectively to minimize losses.
 - The actuaries should understand this process and have well-defined responsibilities.
 - Frequent communication among the managers is required.

 (2) Investment Policy
- It should be stated in the investment policy a neutral position and the permissible deviation from this position.
- The managers should have written guidelines as to how to manage the portfolio.
- This policy should be frequently reviewed.

(3) ALM Expertise
- Makes sure that the managers handling this has a proven track record and the knowledge and expertise. They should also understand both the assets and liabilities side of the flexible premium life business.

(4) Segmentation of Assets
- Flexible premium life policies can be segmented into the insurance part and an investment portion.
- Different segments have different risk management strategies.
- Be careful not to over-segment the assets because this can result in reduced yield.

(5) Liability Pricing Practice
- When pricing, the assumptions should be realistic
Question #4

(a) Deal 1

<table>
<thead>
<tr>
<th>Bank of England</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 0</td>
<td></td>
</tr>
<tr>
<td>Gets $10,000,000</td>
<td>Gets €12,500,000</td>
</tr>
<tr>
<td>Gives €12,500,000</td>
<td>Gives $10,000,000</td>
</tr>
</tbody>
</table>

At the beginning, Notional Amounts are exchanged. Exchanges are through a Broker-Dealer (B/D)

<table>
<thead>
<tr>
<th>Time 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets €975,000</td>
<td>Gets $800,000 = $10,000,000 × 8%</td>
</tr>
<tr>
<td>Gives $800,000</td>
<td>Gives €1,000,000</td>
</tr>
</tbody>
</table>

All payments (all years are made through a B/D)
Each year:
- U.S. Company gives €1,000,000 = €12,500,000 × 8% to B/D.
- Bank of England gets €975,000 = €12,500,000 × 7.8% from B/D.
- Bank of England gives, and U.S. Co. gets (via B/D), $10,000,000 × 12 month LIBOR

<table>
<thead>
<tr>
<th>Time 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets €975,000</td>
<td>Gets $750,000 = $10,000,000 × 7.5%</td>
</tr>
<tr>
<td>Gives $750,000</td>
<td>Gives €1,000,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets €975,000</td>
<td>Gets $1,200,000 = $10,000,000 × 12%</td>
</tr>
<tr>
<td>Gives $1,200,000</td>
<td>Gives €1,000,000</td>
</tr>
</tbody>
</table>

Also, at end, Notional amounts are exchanged back.
(b) Deal 2

<table>
<thead>
<tr>
<th>Local Bank</th>
<th>U.S. Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 0</td>
<td>No initial swap of notional amounts.</td>
</tr>
<tr>
<td>Time 0.5</td>
<td>Gets $395,000</td>
</tr>
<tr>
<td></td>
<td>Gives $350,000</td>
</tr>
</tbody>
</table>

All payments (all years) are made through a B/D. Each ½ year:
- Company gives $400,000 = $10,000,000 \times 7.9\%/2 from B/D.
- Local Bank gets $395,000 = $10,000,000 \times 7.9\%/2 from B/D.
- Local Bank gives, and U.S. Co. gets (via B/D) $10,000,000 \times 6 \text{ months LIBOR}/2 (subject to cap)

Time 1.0	Gets $395,000	Gets $345,000 = $10,000,000 \times 6.9\%/2
	Gives $345,000	Gives $400,000
Time 1.5	Gets $395,000	Gets $325,000 = $10,000,000 \times 6.5\%/2
	Gives $325,000	Gives $400,000
Time 2.0	Gets $395,000	Gets $500,000 = $10,000,000 \times 10\%/2
	Gives $500,000	Gives $400,000
Time 2.5	Gets $395,000	Gets $550,000 = $10,000,000 \times 11\%/2
	Gives $550,000	Gives $400,000

Cap of 11\% on 6-month LIBOR rate applies in this period and the next.

| Time 3.0 | Gets $395,000 | Gets $550,000 = $10,000,000 \times 11\%/2 |
| | Gives $550,000 | Gives $400,000 |

(c) Advantages and Disadvantages to U.S. Company

Deal 1:
- Advantage – U.S. Company guaranteed 12-month LIBOR w/o limitation.
• Advantage – By setting up swap, U.S. Company eliminates any exchange rate risk.
• Advantage – 12-month LIBOR payment is less volatile than the 6-month LIBOR.

Deal 2:
• Disadvantage – Lose potential yield due to 11% cap on interest rate.
• Advantage – Good for hedging a floating rate liability (ALM) … both deals are good for this.
Course 6 – May 2000 – Illustrative Solutions

Question #5

(a) 1. Performance Record
 • Use market cycle (3-5 years)
 • Make sure all accounts included (not exclude lost accounts)
 • How much risk was taken to achieve return?

2. Reputation of firm and manager
 • Client satisfaction

3. Risk/Reward Characteristics
 • Risk = Standard deviation of returns

4. Investment Style (to match fund objectives)
 • Growth
 • Income
 • Balanced

5. Size of Firm
 • Benefits of small firm
 – Get more attention
 – Fewer people to communicate with
 – Trades may not affect market

 • Benefits of large firm
 – Lower transaction costs
 – Managers to review and research assets
 • Negatives – trades affect market and may not give fund attention it deserves.

6. Quality of Staff
 • Consider:
 – Turnover
 – Salary (high indicates better retention and possibly skill)
 – Education

(b) 1. Select investment objectives of fund.
2. Select investment policy
3. Send out questionnaires. Can use consultant to help prepare this and analyze date. Include questions about performance/style/firm.
4. Interview best managers who meet objectives (taking into account all selection criteria).
5. For performance measure, use entire market cycle (3-5 years). Compare to other managers with same style and risk.
6. Hire based on performance and criteria.
7. Select manager based on balance of all of the above.

(c) 1. Diversify: Assets must be diversified according to “prudent man” approach, in order to avoid losses if too much in one asset which “goes bad.”

2. Impartiality: Between participants – must not give preference to one group of participants (retirees vs. active employees). Certain investment (safe) will benefit retirees more than active. Must balance needs of all.

3. Follow Statutory Constraints
 • Allowable investments
 • Reporting methods

4. Delegate Authority but Not Responsibility: Can delegate authority to investment managers but not responsibility. Must, therefore, review their decisions/performance.

5. Coordinate between investment managers, including making sure managers are not offsetting transactions which lead to higher costs.

6. Make property productive.
Course 6 – May 2000 – Illustrative Solutions

Question #6

(a) At inception:
 (i) At inception:
 • Since the work force is young, a more aggressive portfolio is OK.
 • Liquidity is only needed to pay out termination benefits; time horizon is long. However, the plan needs to make contributions and book expense so the manager should have made sure that the potential volatility of earnings compared to the aggressive nature or the investments was OK, i.e., a big loss in portfolio would require higher cash contributions and result in increased expense under FAS.
 • Additionally, this portfolio allocation may not be “prudent” or diversified enough to provide protection to fiduciaries.
 -- The fiduciaries/investment committee should have assessed the risk return profile of the company.
 • They are acting on behalf of the participants and invest so as to ensure payments of benefits.
 • Better portfolio would have some exposure to bonds (20-40% -- some high yield), more diversified equities (small cap, international), had a smaller exposure to real estate.
 • A large cash holding is not needed due to no benefit payments. Aggressive is OK; not diversified is not.

(ii) In 2000, need to dramatically change allocation due to:
 • Retirees
 • Longer service employees ready to retire with higher benefits

To pay retirees, need liquidity so cash and bonds (coupons) allocation should be increased. Can immunize or dedicate cash flows, if desired, for retiree portion to help protect/maintain surplus. Additionally, should increase bond exposure due to potentially longer-term, higher-benefit employees retiring soon. Once again, diversification is a must. What’s important to the company? Presumably, they have decided that they don’t like defined-benefit plans since switching to defined-contribution. Therefore, probably want to minimize cash and expense involved. Therefore, protecting surplus may be of utmost importance, in which case should immunize whole plan.

Summarized:
• Increased liquidity needs
• Maintenance of surplus
• Shorter time horizon
• Need to diversify.

(b) Option to transfer defined-benefit to defined-contribution plan. Consider:
• Model who will transfer (worst case?)
• Move to liquid assets.
• Raise cash.
• Shift entire portfolio from aggressive stance to conservative and diversify as well.
• Eliminate real estate, if possible, or dramatically reduce holding.
• Lock in retiree liability (dedication, immunization).
• Determine impact on surplus.

(d) Changes in investment policy with inception of DC plan:
• DB plan is remaining. However the majority of the people that stay in DB plan will be the long-service, close-to-retirement-age employees. Therefore, the investment policy needs to be revised to put a larger percentage of the assets in fixed securities (maybe GICs and some more money market instruments).
• For the DC plans. Need to have a separate investment policy. In order for fiduciary not to be held liable for diversification, need to:
 - Offer at least three investment options.
 - Allow the transfer of funds between investment options at least quarterly.
 - Provide information such as prospective on appropriate securities in accordance with Securities Act.
Course 6 – May 2000 – Illustrative Solutions

Question #7

(a) Household: Concerned with how to invest. Investment based on diversity of risk preferences, tax situation.

Business:
• Use investments to generate money to purchase real assets through borrowing or issuing stock.
• Want best price with lowest cost – simple securities.

Government:
• Need to raise funds to finance expenditures.
• High credit worthiness allows borrowing at low rates.
• Role is requesting their financial services industry.

Environmental Responses:
• Financial Intermediaries
 - Bring together investors and borrowers.
 - Allow for pooling of money, risk diversification, financial expertise.
• Investment Bankers:
 - Design and market securities.
• Financial Innovation and Derivatives:
 - Bundling/unbundling to transform simple securities to meet demands of investors – financial re-engineering.
 - Use derivatives to hedge risks of other assets.

(b) Agency Problems:
• Conflict between interest of shareholders (household) and company management (business).
• Managers may not run the business in the best interest of shareholders.
• Management controls perquisites – shareholders pay for them.

Control Features:
• Can buy and sell stock at anytime.
• Voting proportional to number of shares.
• Shareholders must approve major decisions.
• Much-audited financial information must be provided to shareholders.
• Shareholders elect Board of Directors.
• Board controls management.

Problems:
• Management can become shareholders – stock options.
- Poor management is threat to shareholders – proxy fights are expensive; paid for by shareholders.
- Takeover is biggest risk of poor management – but take-over fights can be expensive to shareholders.
COURSE 6—FINANCE AND INVESTMENTS

AFTERNOON SESSION

WRITTEN ANSWER
Question #8

Calculate ψ and Q.

Bank account pays 10%.

(a) \[110\psi_1 + 110\psi_2 + 110\psi_3 = 100\]

\[220\psi_1 + 55\psi_2 + 0\psi_3 = 100\]

\[0\psi_1 + 0\psi_2 + 250\psi_3 = 100 \Rightarrow \psi_3 = 0.40\]

\[
\frac{100-55\psi_2}{220} = \psi_1
\]

\[110\left(\frac{100-55\psi_2}{220}\right) + 110\psi_2 + 110(0.4) = 100\]

\[50-27.5\psi_2 + 110\psi_2 + 44 = 100\]

\[82.5\psi_2 = 6\]

\[\psi_2 = \frac{12}{165} = \frac{4}{55}\]

\[\psi_1 = \frac{100-55\left(\frac{4}{55}\right)}{220} = \frac{96}{220} = \frac{24}{55}\]
State price vector if \(\sum \psi_i = \frac{1}{1+i} \) and all strictly positive.

\[
\psi_1 + \psi_2 + \psi_3 = \frac{24}{55} + \frac{4}{55} + \frac{22}{55} = \frac{50}{50}
\]

\[
\frac{1}{1+i} = \frac{1}{1.1} = \frac{50}{55}
\]

The state price vector is \([\psi_1 \quad \psi_2 \quad \psi_3] = \left[\begin{array}{ccc} 24 & 4 & 22 \\ 55 & 55 & 55 \end{array} \right].\)

(b) Since the state price vector exists, the risk neutral probabilities also exist.

\[
Q = (1+i)\psi
\]

\[
= (1+0.10) \left[\begin{array}{ccc} 24 & 4 & 22 \\ 55 & 55 & 55 \end{array} \right]
\]

\[
= \left[\begin{array}{ccc} 24 & 4 & 22 \\ 50 & 50 & 50 \end{array} \right]
\]

\[
\sum Q = 1 = \frac{24}{50} + \frac{4}{50} + \frac{22}{50}
\]

\[
\therefore \text{the risk neutral probabilities are } Q = \left[\begin{array}{ccc} 24 & 4 & 22 \\ 50 & 50 & 50 \end{array} \right].
\]
Course 6 – May 2000 – Illustrative Solution

Question #9

(a) Common Methods of IPO Underwriting:
- Firm Commitment – Investment bank actually buys the shares from the issuing company, then resells them in the market.
 - Risk is assumed by the investment banker in exchange for a spread between the price they buy at and the price they sell at.
 - IPO price will tend to be low for safety.
- Best Efforts – Investment bank doesn’t actually buy the shares, just help market it to potential investors.
 - Issuing firm holds risk if not all shares are sold.
 - No spread, so investment bank makes money from commissions and fees.
 - Investment bank (or multiple) provide expertise in setting the share price.

(b) Determination of IPO Price:
- Syndicate of investment bankers is formed (one is the leader)
- Based on road show interest from potential investors, current market conditions, and their expertise with similar situations, they suggest a price.
- Factors include: economy; perceived interest; market conditions.
- Can be constantly changing, right up to the time of the IPO.
- Price is a trade-off
 - If too high, not all shares will sell (bad if firm commitment).
 - If too low, issuing company won’t raise as much money.
- IPO prices have tended to be underpriced.

(c) The Margin Process:
- For Long Purchases:
 - Shares are bought with a combination of the investor’s money and a margin loan.
 - Initial margin is a set limit, 50%.
 - From that time on, the margin percentage = Equity/Market Value.

\[
\text{Equity} = (\text{Market Value of the Stock}) - (\text{Initial Loan Amount})
\]
- Margin call if margin percentage drops below the required maintenance margin.

- For Short Sales:
 - Shares are sold with the proceeds from the sale adding to equity while the market value of the stock is subtracted.

\[
\text{Equity} = \left(\frac{\text{Market Value}}{\text{of Long Stock}}\right) + \left(\frac{\text{Initial Proceed}}{\text{of Short Stock}}\right) - \left(\frac{\text{Market Value}}{\text{of Short Stock}}\right)
\]
Margin % = \[\frac{\text{Equity}}{\text{Market Value of Short Stock}} \]

- The initial short position requires that the initial account value (long stock or cash) be a minimum percentage (50%) of the stock being sold short.

(d) Alternative Actions when Faced With A Margin Call:
- Investor A could add cash (make a deposit) to his account to bring the margin % up to 35%.

Investor A has 480 shares with a margin loan of $12,000.

\[
\text{Margin %} = \frac{480(\$30) - 12,000}{480(\$30)} = \frac{2400}{14,400} = 16.6\%
\]

\[
14,400 \times 0.35 = 5040 - 2400 = 2640
\]

Must add $2,640.

- Or he could sell some of his shares until his margin % was at least 35%.

(e) Margin % = \[\frac{12,000 + \left(\text{Sell short 480 shares @ $50} \right) - \text{MV of Short Stock}}{\text{MV of Short Stock}} \]

Maintenance Margin = 40%.

\[
36,000 = \frac{480}{(\text{stock price})}
\]

\[
0.40 = \frac{480}{(\text{stock price})}
\]

\[
192 = 36,000 + \frac{480}{(\text{stock price})}
\]

\[
672 = 36,000
\]

Stock price = $53.57.

Investor B will get a margin call if stock price rises to $53.57.
Course 6 – May 2000 – Illustrative Solution

Question #10

(a)

(i) Floating Rate Notes:
- Coupon payments vary with short-term index.
- Usually contain puts.
- Better when interest rates or index go up because coupons will be reset based on index.

(ii) Principal Only Strips:
- For MBS, these are securities that are based only on principal payments (interest portion stripped off)
- Very risky
- Good if pre-payments are high because principal will be returned faster.
- Bought at a discount.

(iii) High-Yield Securities:
- Very risky
- Usually unsecured
- Great potential profit, but also great risk.

Examples:
- High-yield bank loans
- Regular, fixed-interest loans – High coupon ("Plain vanilla")
- Rule 144A, (illegible) companies to sell debt and private placement before registering with SEC
- Bond/stock warrant.

NOTE: “Warrant” option usually to buy stock from a company – company creates new shares.
- Extendible securities
- Split coupon – (No interest in first year)
- Payment in-kind (Pay in debt)
- Step-up.

(b) Support a 5-Year GIC with Option to Surrender if Interest Rates Change.

Floating Rate Notes:
- If interest rates go up, people will surrender GICs or avoid buying to invest in better yielding securities.
- Floating rate will allow you to credit higher rates on new GICs if based on interest
rate market.

- Concerns with Security:
 - For a GIC, it would be better to lock in a fixed rate above the crediting rate, rather than buy a floating rate.
 - Safety Net: If interest rates drop below crediting rate, individual will not surrender GIC and company will credit more than it will earn.

- Principal-Only Strips:
 - If interest rates drop, more people will refinance, causing yield to go up.
 - If interest rates go up, less will refinance, causing less of a return.

- Analyze Advantage:
 - If interest rate drops, GICs will not be surrendered and high yields will be earned.
 - Good scenario.

- Analyze Disadvantage:
 - If interest rates increase, GIC will be surrendered and might raise liquidity concerns and lack of earnings.
 - Since GICs are mostly risk adverse, PO might be too risky.

- High-Yield Securities (Concerns with using high-yield)
 - High risk might not be adequate for GIC
 - Uncertain return and large risk might not meet GIC crediting rate.
 - Liquidity might be poor if large numbers of GICs are surrendered and high-risk securities are defaulting.
 - Delayed interest payments of some high-yield securities could cause losses between earned rate and crediting rate of GIC.
Course 6 – May 2000 – Illustrative Solutions

Question #11

I. Studies have shown that low P/E stocks have higher returns than high P/E stocks over long holding periods.

II. Analysis from EMH Viewpoint
 • Observed out-performance held true even if returns adjusted for Beta → P/E may act as additional descriptor of risk.
 • This result would appear to violate the EMH.

III. Analysis from Dreman Viewpoint
 • Investor overreaction hypothesis – Investors overvalue best stocks (high P/E) and undervalue worst stocks (low P/E).
 • Analysis forecasts poor due to:
 - Tendency to extrapolate from past earnings
 - Behavioral influences
 - Peer and institutional pressures.
 • Trigger events – great positive impact on low P/E stocks
 - Positive earnings surprise for low P/E stocks
 - Negative earnings surprise for high P/E stocks.
 • Reinforcing even – small impact on low P/E stocks
 - Negative earnings for low P/E stocks
 - Positive earnings surprise for high P/E stocks.
Course 6 – May 2000 – Illustrative Solution

Question #12

(a)

\[V_0 = 100 \]

\[r_a = \]

\[V_H = \frac{106}{r_H} = \frac{106}{7.76\%} = 106 \]

\[r_t = 5.75\% \]

\[V_L = \frac{106}{r_L} = 100.236 \]

\[V_H = \frac{106}{r_H} = 98.365 \]

\[V_0 = 100 = 0.5 \left(\frac{100.236 + 6 + 98.365 + 6}{1 + r_0} \right) \]

\[\therefore r_0 = 5.30\% \]

\[OAS = 0.25\% = \text{Constant spread to add to all rates.} \]

\[r_a = 7.76 + 0.25 = 8.01\% \]

\[r_t = 5.75 + 0.25 = 6.00\% \]

\[r_0 = 5.30 + 0.25 \]

\[= 5.55\% \]

\[V_L = \frac{106}{r_L} = 106 \]
\[V_H = \frac{106}{1.0801} = 98.14 \]
\[V_k = \frac{106}{1.06} = 100.00 \]
\[V_0 = 0.5 \left(\frac{100 + 6 + 100 + 6}{1.055} \right) = \$100.43 \text{ Market Price} \]

But this is <100. \therefore put option will be exercised set value to 100.

(b) **Modified Duration**

- Measures sensitivity of bond’s price to changes in yield to maturity.
- Assumes yield curve is flat.
- Assumes cash flows independent of interest rates.

This bond is “putable” with cash flows that change with changes in interest rates. Therefore, modified duration is an inappropriate measure for this bond.

Effective Duration

This is the correct measure for this bond as it compensates for cash flows that change due to interest rate changes.
Question #13

(a) Liquidity is the ability to meet normal and adverse cash needs without problems, that is, without affecting surplus too much or losing too much value on the sale of securities.

(b) • Separate assets and liabilities.
 • Assets available in one day/one month.
 • Liabilities required in one day/one month.
 • Use the maximum required and minimum available.
 • Net assets available = assets available – liabilities required.

• Liquidity Ratio = \(\frac{\text{Net Assets Available}}{\text{Total Liquidity Needs}} \)

• Evaluate under normal circumstances and under stress.

(a) Company-specific events:
 • Downgrade of the company by rating agencies – Policyholders will go get their money back, which will only make the situation worse.
 • Rumor of financial problems (even if false) – same problem as above.
 • Loss of a source of revenue/liquidity.
 • Reports below expectations (i.e., reported earnings or dividend). – Investors will think company is in trouble.

Industry-wide events:
 • Problem with a big insurance company – Policyholders will be concerned.
 • Perceived problems with a certain product – Everyone will want to get money out of this product in all companies.
 • Sudden change in customer demand – Companies need time to adjust themselves.
 • Macro-level economic and political instability – A change in the regulatory environment could cause problems.

(b) Sources of cash:
 • Existing cash position.
 • Short-term securities in money market.
 • Issuance of commercial paper.
 • Get a line of credit with bank – Might be refused if company has real problems.
 • Sell marketable securities.
 • Securitize unmarketable securities.
 • Repurchase agreements.
 • Cash flow from operations.
Company could also ad to its policies:
• Surrender fees.
• Surrender values adjusted to market.
• Delays in GICs.

Can also use reinsurance, offer separate account for concerned DC plan participants – polling and selling private placements.

Most important:
• Keep regulators and rating agencies informed regularly.
• Control public view of situation.
• Inform agents.
Course 6 – May 2000 – Illustrative Solutions

Question #14

(a) Liquidity premium hypothesis:

- Long-term bonds have a higher duration and, therefore, they are more sensitive to interest rate changes.
- Investors require a liquidity premium to accept this higher level of risk.
- The liquidity premium increases with maturity but at a decreasing rate.

 Graph 1: Hypothesis gives no explanation.
 Graph 2: Hypothesis gives no explanation.
 Graph 3: As maturity increases, the liquidity premium increases but at a decreasing rate.

(b) Pure or unbiased expectations:

- Forward interest rates are shown in spot rates:

\[S_1 = f_0 \]
\[(1 + S_2)^2 = (1 + f_0)(1 + f_1) \]
\[(1 + S_3)^3 = (1 + f_0)(1 + f_1)(1 + f_2) \]

- Investors expect the same return from differing maturity strategies.
- Graph 1: Future interest rates will increase and then decrease.
- Graph 2: Future interest rates will decrease.
- Graph 3: Future interest rates will increase.

(c) Market Segmentation:

 Graph 2:
 - Investors have their segment that they prefer and they cannot be drawn from it.
 - Hypothesis acknowledges some overlap between ST investor (banks) and long-term investors (insurance companies).
 - ST rates are more volatile.
 - Banks prefer to borrow money to individuals and business and will invest only the excess.
 - When economy is doing well, business borrow from banks. Banks have little excess funds to invest, which increases supply of ST investments, which increases rates relative to LT – Banks have less money to invest than insurance companies.

Graph 3:
• When economy slackens off:
 - Less borrowing (loans being paid off)
 - Banks have more money to invest in ST securities
 - Decreases supply
 - Increases security prices and decreases ST yields w/ change to LT.
• Banks have more money to invest than insurance companies.

Graph 1:
• Banks and insurance companies have about the same amount of money to invest, but there is a void in the investing market.

** END OF EXAMINATION 6 **
Course 6
May 2000

Multiple-Choice Answer Key

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>