Discrete Mathematics Seminar

Illinois State University

2:00-2:50 pm, February 20@ STV 120

Speaker: John Goldwasser, West Virginia University

Polychromatic Colorings of the Integers

We show that if S is any set of 4 integers then there is a 3-coloring of \mathbb{Z} such that every additive translate of S gets all 3 colors. This proves a conjecture of Newman that the codensity of any set of 4 integers in \mathbb{Z} is at most 1/3 (the codensity of a finite set S of integers is the minimum density of a set T in \mathbb{Z} such that $S + T = \mathbb{Z}$).

Loosely speaking, if L is any large structure consisting of some elements, and \mathscr{F} is a family of substructures of L, we say a k-coloring of the elements of L is \mathscr{F} -polychromatic if every substructure in \mathscr{F} gets all k colors. The polychromatic number of \mathscr{F} in L is the largest k such that there exists an \mathscr{F} -polychromatic k-coloring. We will talk briefly about polychromatic colorings in other settings besides the integers and suggest some questions for further thought.

