Mixed MDS Codes

Let \mathbb{F}_q^m denote the vector space of dimension m over the Galois field \mathbb{F}_q. A k-independent set of subspaces (k-ISS) of \mathbb{F}_q^m is a set \mathcal{S} of subspaces in \mathbb{F}_q^m such that $|\mathcal{S}| \geq k$ and any subset of k subspaces of \mathcal{S} is independent.

In a previous DiscMath talk, we have seen that a k-ISS can be used to construct a mixed code C with minimum Hamming distance at least $k + 1$ and covering radius of C is at most $k - 1$.

In this talk, we will discuss the conditions under which C has the maximum possible cardinality among all mixed codes with the same parameters (length and minimum distance), i.e., when C is Maximum Distance Separable (MDS).