Graph Theory meets Extremal Set Theory

In extremal set theory, one is typically given a set S on n elements and a collection \mathcal{F} of subsets A_1, A_2, \ldots of S with some restrictions on those subsets (for example, each subset must have a common element with every other subset). One then typically seeks to upper bound the size of \mathcal{F}. A natural analogue of this setting for graphs, introduced by Holroyd and Talbot in 2002, is to take our graph G to be $G = (S, E)$ and each A_i to be an independent subset of G. In this talk, I will discuss some old and new problems and results in the area, and make a connection to Chvátal’s conjecture in extremal set theory. If time permits, I will sketch a proof of a result I obtained in joint work with Glenn Hurlbert and Vikram Kamat.