What is a Differential Equation? Also known as “DIF-E-Q” or “D.E.”

- An equation in which a rate of change is expressed in terms of an independent and dependent variable.

Examples of Differential Equations

<table>
<thead>
<tr>
<th>$\frac{dy}{dx}$</th>
<th>$\frac{dP}{dt}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x + 5y$</td>
<td>$K \cdot P \left(1 - \frac{P}{100}\right)$</td>
</tr>
<tr>
<td>$C \cdot y$</td>
<td>$y' = 2x^2 - 8y + y^2$</td>
</tr>
<tr>
<td>$y'' + y' = 2y + 5x^2$</td>
<td></td>
</tr>
</tbody>
</table>

You already know how to solve a huge number of differential equations.

i) If $\frac{dy}{dx} = 3x^2 - 8x + 1...$

 Then $y = x^3 - 4x^2 + x + C$

 This is a **solution** to that differential equation, found by determining the anti-derivative of $\frac{dy}{dx}$.

 This is a **differential equation**, because it expresses a rate of change, $\frac{dy}{dx}$, in terms of the independent variable x.

ii) $y' = \frac{1}{x}$ \Rightarrow $y = \ln|x| + C$

iii) $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$ \Rightarrow $y = \sin^{-1}(x) + C$

Here are some everyday situations where rate of change is imbedded within a relationship.

Compound interest: “interest on interest”

$$A(t) = P \left(1 + \frac{r}{n}\right)^{t\cdot n}$$

where $A(t)$ is the account value at time t in years, P is the principle, r is the annual interest rate, and n is the number of compounding periods per year.

Population Growth: future population depends on the current population

$$P(t) = P_0 (1 + r)^t$$

where $P(t)$ is the population at time t, in some units of time t, P_0 is the initial population, and r is the growth rate per unit of time.
What is a solution to a differential equation?

- A **general solution** is a family of functions that satisfies a given differential equation.
- A **particular solution** (also called the solution to an initial-value problem) is a particular function that satisfies both a given differential equation and some specified ordered pair for the function.

Example 1

Show that $y = x - \frac{1}{x}$ is a solution to the differential equation $xy' + y = 2x$.

Step 1: If $y = x - \frac{1}{x}$ then $\frac{dy}{dx} = y' = 1 + \frac{1}{x^2}$.

Step 2: Substitute this known representation for y' into the original differential equation.

$$xy' + y = 2x$$

$$x\left(1 + \frac{1}{x^2}\right) + \left(x - \frac{1}{x}\right) = 2x$$

Step 3: Show that the left-side expression (LS) is equivalent to the right-side expression (RS).

$$LS = x\left(1 + \frac{1}{x^2}\right) + \left(x - \frac{1}{x}\right)$$

$$= \left(x + \frac{1}{x}\right) + \left(x - \frac{1}{x}\right)$$

$$= 2x$$

$$= RS$$

We’ve shown that the LS expression is equivalent to the RS expression, so we know $y = x - \frac{1}{x}$ is a solution to the differential equation $xy' + y = 2x$.

Example 2

Show that $y = (\sin x)(\cos x) - \cos x$ is a solution to the initial-value problem (IVP)

$$y' + (\tan x)y = \cos^2 x$$ with $y(0) = -1$ on $-\frac{\pi}{2} < x < \frac{\pi}{2}$
Step 1: If \(y = (\sin x)(\cos x) - \cos x \), we know that \(y' = \cos^2 x - \sin x(\sin x - 1) \).

Step 2: Into the original DE, sub in the known expression for \(y \) as well as the known expression for its derivative, \(y' \), and then show that the DE is true.

For
\[
y' + (\tan x)y = \cos^2 x \tag{1},
\]
with
\[
y = (\sin x)(\cos x) - \cos x \quad \text{and} \quad y' = \cos^2 x - \sin x(\sin x - 1),
\]
can we show that
\[
LS: \quad y' + (\tan x)y
\]
is equivalent to
\[
RS: \quad \cos^2 x ?
\]
\[
LS = y' + (\tan x)y
= \left[\cos^2 x - \sin x(\sin x - 1)\right] + (\tan x)\left[(\sin x)(\cos x) - \cos x\right]
= \cos^2 x - \sin^2 x + \sin x + (\tan x)(\sin x)(\cos x) - (\tan x)(\cos x)
= \cos^2 x - \sin^2 x + \sin x + \left(\frac{\sin x}{\cos x}\right)(\sin x)(\cos x) - \left(\frac{\sin x}{\cos x}\right)(\cos x)
= \cos^2 x - \sin^2 x + \sin x + \sin^2 x - \sin x
= \cos^2 x
= RS
\]
This shows that the LS expression of (1) above is equivalent to the RS expression. This shows that \(y = (\sin x)(\cos x) - \cos x \) is a solution to \(y' + (\tan x)y = \cos^2 x \).

We also must show that \(y(0) = -1 \):
\[
y = (\sin x)(\cos x) - \cos x
y(0) = (\sin 0)(\cos 0) - \cos 0
= (0)(1) - 1
= -1
\]