

Department of Mathematics

Senior Portfolio Instructions

Prior to graduation, all mathematics students must complete a senior portfolio, including the cover sheet. This portfolio consists of three parts and must be signed by the student's academic advisor.

<u>Part I:</u> A collection of four to six mathematics artifacts.

Actuarial Science Sequence: At least four items from the following list:

- 1. Graded statistical project from an actuarial or statistics course, such as MAT 353, or MAT 355, or from Statistical Project Competition.
- 2. Internship report submitted for MAT 298.
- 3. Substantial graded proof or mathematical argument in a class taken in the major, most likely MAT 175.
- 4. Graded test from an advanced actuarial class, e.g., MAT 380, MAT 381, MAT 383, or MAT 384.
- 5. Passing of two professional actuarial examinations.
- 6. Completion of the Katie School Business Communication workshop or, for students who have not had internship experience, a full Certificate in Leadership and Business Acumen.

Data Science and Computational Mathematics Sequence: At least four items from the following list:

- 1. Graded mathematical proof from courses such as MAT 175/236/247/347/260/363.
- 2. Graded project or test showing competence in **programming** from courses such as IT 166/168/180
- 3. Graded project or test showing competence with **databases or data structures** from courses such as IT 279
- 4. Graded project or test from an advanced **statistical class**, such as MAT 351/353/354/355/356/443/455.
- 5. Graded project or test showing competence in **predictive modeling**, deep learning, or data visualization, such as IT 244/348/352 or MAT 205.
- 6. Graded **data science** project from a data science/statistics course, such as MAT 355 or a Data Science Project Competition.
- 7. Graded project or test from an advanced optimization class such as MAT 362 or an advanced discrete mathematics class such as MAT 363.

<u>Mathematics and Statistics Sequences:</u> A collection of four to six mathematics artifacts. These problems with solutions can not all come from one course and are to demonstrate your ability to use the language of mathematics to communicate ideas, show how you can construct and critically analyze mathematical arguments, and demonstrate your ability to develop your problem-solving skills, logical reasoning, and creative thinking over a sequence of courses.

Suggested problems to include would be any project or extended problem given in courses numbered 175 or higher. You are encouraged to select problems from a series of related courses. For example, you might choose to include sample problems/solutions from a sequence of courses taken over the same mathematics subtopic, as given below.

Algebra: MAT 175, MAT 236, MAT 330, MAT 336, MAT 337

Analysis: MAT 247, MAT 340, MAT 341, MAT 345, MAT 347

Discrete Mathematics: MAT 260, MAT 361, MAT 362, MAT 363

Statistics: MAT 350, MAT 351, MAT 355, MAT 356,

Research: MAT 175, MAT 260, MAT 268

Note that it is not necessary to include problems from every course listed in a subtopic above, only a

subset of courses from a subtopic or subtopics. You are encouraged to submit several problems with solutions from two or more subtopics.

For each artifact, include a brief description of why this particular artifact was chosen and how it meets the criteria stated above. For example, how does this artifact demonstrate using the language of mathematics to communicate ideas? How does this artifact demonstrate your ability to analyze mathematical arguments critically? How does this artifact show how you have developed your problem-solving skills and/or creative thinking? It is not necessary that every artifact meet all the criteria suggested above, but each artifact should demonstrate at least one of these features. In addition, at least one artifact should address each of the criteria mentioned above.

<u>Part II:</u> Complete the Attitude Assessment Survey during your last semester. You will be sent a link to a survey during your last semester.

<u>**Part III:**</u> Submit your scores on external professional examinations, if applicable to your sequence (see the following cover sheet).

SENIOR PORTFOLIO COVER SHEET

Name	Advisor		
UID	Graduation Term	Catalog	
Major (s)	Graduation Graduation	GPAs: Major	
Minor (s)		Overall	
Math Courses Completed:	200-level		
(circle transfer courses)	300-level		

Part I: List of artifacts submitted

Artifact	Title	Course	Grade	Brief description of artifact.
#				
1.				
2.				
3.				
4.				
5.				
6.				

Part II: Attitude Assessment Survey

Date Survey Completed Online: _____

Part III:	Professional Examinations Scores	(enter NA if not applicable)

Illinois Certification Testing	Exam in Math:	Score	

Actuarial Professional Actuarial Examinations (if you have exams other than those listed, write them in):

SOA P/ CAS 1 Score	SOA FM/CAS 2 Score
SOA FAM Score	CAS MAS I Score
SOA ALTAM Scor <u>e</u>	CAS MAS II Score
SOA ASTAM Scor <u>e</u>	SOA SRM Score
GRE:	
Verbal Reasoning Score	
Quantitative Reasoning Score	
Analytical Writing Score	
GRE Mathematics Subject Test: Score _	
Comparable Professional Exam:	Score
Portfolio Evaluation Date	
Advisor Signature	

Primary Traits	Not	Developing	Established	Advanced	Goal
	Present				
Demonstrates the		Shows evidence of	Shows evidence of <u>fully</u>	Shows evidence of <u>fully developed</u>	2
ability to construct and		developing mathematical	developed mathematical	mathematical arguments and proofs that are	
analyze mathematical		arguments and proofs;	arguments and proofs; shows	elegant and creative; shows evidence of	
arguments (for		gives evidence of <u>using</u>	evidence of <u>recognizing reasoning</u>	recognizing reasoning and proof as	
example, a proof).		various methods of	and proof as fundamental aspects	fundamental aspects of mathematics; shows	
		reasoning and proof.	of mathematics; shows evidence	evidence of selecting and using various	
			of selecting and using various	methods of reasoning and proof in creative	
			methods of reasoning and proof.	ways; shows evidence of making and	
				investigating mathematical conjectures.	
Demonstrates the		Shows evidence of	Shows evidence of applying a	Shows evidence of applying and adapting a	3
ability to solve		solving routine problems;	variety of strategies to solve	variety of strategies to solve mathematical	
mathematical		provides evidence of	mathematical problems; shows	problems utilizing logical reasoning and	
problems.		knowing the process of	evidence of more developed	creative thinking; artifacts indicate that the	
		mathematical problem	mathematical problem solving	student can build mathematical knowledge	
		solving.	skills.	through problem solving skills.	
Applies mathematical		Shows evidence of	Shows evidence of recognizing	Shows evidence of recognizing and solving	3
knowledge to <u>new</u>		recognizing and solving	and solving new problems in a	new problems in a variety of contexts; shows	
problem situations.		new problem situations.	variety of contexts.	evidence of selecting, applying, and translating	
				mathematical ideas to solve new problems.	
Uses mathematical		Shows evidence of using	Shows evidence of using	Shows evidence of using mathematical terms to	5
terms (notation,		mathematical terms to	mathematical terms to organize,	organize, record, and communicate	
symbolism)		organize, record, and	record, and communicate	mathematical ideas; shows evidence of using	
appropriately and		communicate	mathematical ideas; shows	mathematical terms to model and interpret	
correctly.		mathematical ideas.	evidence of using mathematical	physical, social, or mathematical phenomenon;	
			terms to model physical, social, or		
			mathematical phenomenon.		
Demonstrates the		Shows evidence of <u>using</u>	Shows evidence of	Shows evidence of communicating his or her	5
ability to communicate		the language of	communicating his or her	mathematical thinking clearly to others; shows	
mathematics.		mathematics in some	mathematical thinking clearly to	evidence of using the language of mathematics	
		appropriate ways.	others; shows evidence of using	to express ideas precisely; shows evidence of	
			the language of mathematics to	organizing mathematical thinking through	
			express ideas precisely.	communication.	

Department of Mathematics B.A./B.S. Portfolio Assessment Rubric