Topic: The Chain Rule

When taking the derivative of a composition of functions, the chain rule must be used. Function composition is when one function is applied, then its output is fed into another function; it is written as $f(g(x))$, where the function g is applied first and f is applied second. An example of function composition is $\sin (\cos (x))$; first \cos is applied to x, and the output of \cos is then fed into sin. In this case, we let $g(x)=\cos (x)$ and $f(x)=\sin (x)$. Another example is $\left(x^{2}-1\right)^{5}$; in this case, $g(x)=x^{2}-1$ and $f(x)=x^{5}$. Identifying what you should use as f and g is essential to properly applying the chain rule.

The chain rule says: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$

Examples:

1. Find the derivative of $\left(3 x^{7}-2 x^{4}+4\right)^{22}$.

We set $g(x)=3 x^{7}-2 x^{4}+4$ since this is applied first. The result of g is raised to the 22 nd power, so we set $f(x)=x^{22}$. To apply the chain rule, we differentiate $f^{\prime}(x)=22 x^{21}$ and $g^{\prime}(x)=21 x^{6}-8 x^{3}$. Our final result is

$$
f^{\prime}(g(x)) g^{\prime}(x)=22\left(3 x^{7}-2 x^{4}+4\right)^{21}\left(21 x^{6}-8 x^{3}\right)
$$

2. Find the derivative of $\cos \left(x^{5}\right)$.

We set $g(x)=x^{5}$ and $f(x)=\cos (x)$. Then, we differentiate $f^{\prime}(x)=-\sin (x)$ and $g^{\prime}(x)=5 x^{4}$. Our final result is

$$
f^{\prime}(g(x)) g^{\prime}(x)=-\sin \left(x^{5}\right) \cdot 5 x^{4}
$$

3. Find the derivative of $(\cos x+5 \sin x)^{8}$.

We set $g(x)=\cos x+5 \sin x$ and $f(x)=x^{8}$. Then, we differentiate $f^{\prime}(x)=8 x^{7}$ and $g^{\prime}(x)=-\sin x+5 \cos x$. Our final result is

$$
f^{\prime}(g(x)) g^{\prime}(x)=8(\cos x+5 \sin x)^{7}(-\sin x+5 \cos x)
$$

4. Find the derivative of $3^{4-x^{2}}$.

We set $g(x)=4-x^{2}$ and $f(x)=3^{x}$. Then, we differentiate $f^{\prime}(x)=\ln (3) \cdot 3^{x}$ and $g^{\prime}(x)=-2 x$. Our final result is

$$
\ln (3) \cdot 3^{4-x^{2}} \cdot(-2 x)=-2 x \ln (3) \cdot 3^{4-x^{2}}
$$

