Topic: Fractions

Background: Assume in all rules below that no denominator is zero.

$$
\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c} \text { Add numerator when denominator are equal }
$$

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \text { Find a common denominator }
$$

$$
\frac{a}{c} \cdot \frac{b}{d}=\frac{a b}{c d} \text { Multiply numerator and denominator in a product }
$$

$$
\frac{\frac{a}{c}}{\frac{b}{d}}=\frac{a d}{b c} \text { To divide by a fraction multiply by its reciprocal }
$$

$$
\frac{\frac{a}{b}}{c}=\frac{a}{b c} \text { Same as division by } \frac{c}{1}
$$

$\frac{a}{\frac{b}{c}}=\frac{a c}{b}$ To divide by a fraction multiply by its reciprocal

$$
-\frac{a}{b}=\frac{-a}{b}=\frac{a}{-b}
$$

Illustrative Examples:

(1) Simplify the following expression. Assume any factors you cancel are not zero.

$$
\frac{\frac{7}{k+1}-1}{\frac{2}{k+1}-1} .
$$

Solution:

$$
\begin{aligned}
\frac{\frac{7}{k+1}-1}{\frac{2}{k+1}-1} & =\frac{\frac{7-(k+1)}{(k+1)}}{\frac{2-(k+1)}{(k+1)}} \\
& =\frac{(6-k)}{(k+1)} \cdot\left(\frac{k+1)}{(1-k)} \quad(\text { Cancel }(k+1) \text { from numerator and denominator })\right. \\
& =\frac{(6-k)}{(1-k)}
\end{aligned}
$$

(2) Simplify and write the following expression as a single fraction.

$$
3+\frac{x}{5}+\frac{2}{x}+\frac{7}{x^{2}}
$$

Solution:

$$
\begin{aligned}
3+\frac{x}{5}+\frac{2}{x}+\frac{7}{x^{2}} & =\frac{(3) \cdot\left(5 x^{2}\right)+(x) \cdot\left(x^{2}\right)+(2) \cdot(5 x)+(7) \cdot(5)}{5 x^{2}} \\
& =\frac{15 x^{2}+x^{3}+10 x+35}{5 x^{2}}
\end{aligned}
$$

(3) Simplify and write the following expression as a single fraction. Assume any factors you cancel are not zero.

$$
\frac{a+b}{a^{-2}+b^{-2}}
$$

Solution:

$$
\begin{aligned}
\frac{a+b}{a^{-2}-b^{-2}} & =\frac{(a+b)}{\frac{1}{a^{2}}-\frac{1}{b^{2}}} \\
& =\frac{(a+b)}{\frac{b^{2}-a^{2}}{a^{2} b^{2}}} \\
& =\frac{(a+b) a^{2} b^{2}}{b^{2}-a^{2}} \\
& =\frac{(a+b) a^{2} b^{2}}{(b+a)(b-a)}\left(\text { factorize } b^{2}-a^{2}\right) \\
& \left.=\frac{a^{2} b^{2}}{(b-a)} \quad \text { (Cancel }(a+b) \text { from numerator and denominator. }\right)
\end{aligned}
$$

