Topic: Functional notation

Background: Given functions $f(x)$ and $g(x)$, an expression for the function $f(g(x))$ is obtained by substituting $g(x)$ for each occurrence of x in the expression for $f(x)$.

Illustrative Examples:

(1) Let $f(x)=3 x^{2}-7 x+2$. Find an expression for $f(2 x-1)$ in simplified form.

Solution:
$f(2 x-1)=3(2 x-1)^{2}-7(2 x-1)+2=3\left(4 x^{2}-4 x+1\right)-14 x+7+2=12 x^{2}-26 x+12$.
(2) Let $f(x)=3 x^{2}+2 x+7$. For $h \neq 0$ find an expression for $\frac{f(x+h)-f(x)}{h}$ in simplified form.

Solution:

$$
\begin{aligned}
f(x+h) & =3(x+h)^{2}+2(x+h)+7 \\
& =3\left(x^{2}+2 x h+h^{2}\right)+2 x+2 h+7 \\
& =3 x^{2}+6 x h+3 h^{2}+2 x+2 h+7
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\left(3 x^{2}+6 x h+3 h^{2}+2 x+2 h+7\right)-\left(3 x^{2}+2 x+7\right)}{h} \\
& =\frac{6 x h+3 h^{2}+2 h}{h} \\
& =6 x+3 h+2
\end{aligned}
$$

(3) Let $f(x)=7 x^{3}+9$ and let $g(y)=y^{2}$. Find an expression for $f(g(z))$.

Solution:
$f(g(z))=f\left(z^{2}\right)=7\left(z^{2}\right)^{3}+9=7 z^{6}+9$.
(4) Let $f(x)=4 \ln (x)+x^{2}+7$. Find an expression for $f\left(e^{x}\right)$ in simplified form.

Solution:
$f\left(e^{x}\right)=4 \ln \left(e^{x}\right)+\left(e^{x}\right)^{2}+7=4 x+e^{2 x}+7$.
(5) Let $f(x)=7 x-30$. Find an expression for $f\left(\frac{x+30}{7}\right)$.

Solution:
$f\left(\frac{x+30}{7}\right)=7\left(\frac{x+30}{7}\right)-30=x$.

