Worksheet on Ring Isomorphisms

Let L be the ring defined in Problem 22 in Section 3.1 on page 53. So L is the set of positive real numbers and we define a new addition and multiplication on L by

$$a \oplus b = ab \quad \text{and} \quad a \otimes b = a^\log b$$

where $\log b$ is the natural log of b.

We want to show that L is isomorphic to \mathbb{R} as rings. Our first task is to create a homomorphism from L to \mathbb{R} that is one-to-one and onto. We have a couple of hints on how to do this.

In Problem 22 of Section 3.1, we saw $0_L = 1$. If $\phi : L \to \mathbb{R}$ is an isomorphism of rings, what must $\phi(1)$ be? (Hint: See Theorem 3.12.)

We also saw that L has an identity, which was e. Since ϕ is an isomorphism, we can use Theorem 3.12 to determine what $\phi(e)$ must be. What is $\phi(e)$?

Use the properties of logs and homomorphisms to determine $\phi(e^2), \phi(e^3)$, and $\phi(e^{-1})$.

Make a guess as what might be an appropriate function for ϕ.

Now prove that the function ϕ you defined is an isomorphism of rings.