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ABSTRACT

Applications of fuzzy set theory to property-liability and life insurance have emerged
in the last few years through the work of Lemaire (1990), Cummins and Derrig (1993,
1994), and Ostaszewski (1993). This article continues that line of research by providing an
overview of fuzzy pattern recognition techniques and using them in clustering for risk and
claims classification. The classic clustering problem of grouping towns into rating territo-
ries (DuMouchel, 1983; Conger, 1987) is revisited using these fuzzy methods and 1987
through 1990 Massachusetts automobile insurance data. The new problem of classifying
claims in terms of suspected fraud is also addressed using these same fuzzy methods and
data drawn from a study of 1989 bodily injury liability claims in Massachusetts.

Introduction

In 1961, Ellsberg presented the following paradox. An experiment was
designed with two urns, each containing 100 balls, of which the first one was
known to contain 50 red balls and 50 black balls, while no further information
was given about the contents of the other urn. If asked to bet on the color of
a ball drawn from one of the urns, most people were found indifferent as to
which color they would choose no matter whether the ball was drawn from the
first or the second urn. On the other hand, Ellsberg found that if people were
asked which urn they would prefer to use for betting on either color, they
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consistently favored the first urn (no matter what color they were asked to bet
on).

What seems to be present in this experiment is the participants’ perception
of uncertainty. When we say “uncertainty,” the usual association is with “prob-
ability.” The Ellsberg paradox illustrates that some other form of uncertainty
can indeed exist. Probability theory provides no basis for the outcome of the
Ellsberg experiment.

Klir and Folger (1988) analyze the semantic context of the term “uncertain”
and arrive at the conclusion that there are two main types of uncertainty, cap-
tured by the terms “vagueness” and “ambiguity.” Vagueness is associated with
the difficulty of making sharp or precise distinctions among objects. “Ambigu-
ity” is caused by situations where the choice between two or more alternatives
is unspecified. The basic set of axioms of probability theory originating from
Kolmogorov, rests on the assumption that the outcome of a random event can
be observed and identified with precision. Any vagueness of observation is
considered negligible, or not significant to the construction of the theoretical
model. Yet one cannot escape the conclusion that forms of uncertainty repre-
sented by vagueness of observations, human perceptions, and interpretations,
are missing from probabilistic models, which equate uncertainty with random-
ness (i.e., a sophisticated version of ambiguity).

Several reasons may exist for wanting to search for models of a form of
uncertainty other than randomness. One is that vagueness is unavoidable. Giv-
en imprecision of natural language, or human perception of the phenomena
observed, vagueness becomes a major factor in any attempt to model or predict
the course of events. But there is more. When the phenomena observed be-
come so complex that exact measurement involving all features considered
significant would be impossible, or longer than economically feasible for
study, mathematical precision is often abandoned in favor of more workable
simple, but vague, “common sense” models. Thus, complexity of the problem
may be another cause of vagueness.

These reasons were the driving force behind the development of the fuzzy
set theory (FST). This field of applied mathematics has become a dynamic
research and applications field, with success stories ranging from a fuzzy logic
rice cooker to an artificial intelligence in control of Japan’s Sendai subway
system. The main idea of fuzzy set theory is to propose a model of uncertainty
different from that given by probability, precisely because a different form of
uncertainty is being modeled.

Fuzzy set theory was created in Zadeh’s (1965) historic article. To present
this basic idea, recall that a characteristic function of a subset E of a universe
of discourse U is defined as

x) = 1ifx e E
Xg(X ‘{Oifer.

In other words, the characteristic function describes the membership of an
element x in a set E. It equals one if x is a member of E, and zero otherwise.
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Zadeh challenged the idea that membership in all sets behaves in the man-
ner described above. One example would be the set of “tall people.” We con-
sistently talk about the set of “tall people,” yet understand that the concept
used is not precise. A person who is 5’11" is tall only to a certain degree, and
yet such a person is not “not tall.” Zadeh writes,

The notion of fuzzy set provides a convenient point of departure for the construction
of a conceptual framework which parallels in many respects the framework used in
the case of ordinary sets, but is more general than the latter and, potentially, may
prove to have a much wider scope of applicability, particularly in the fields of pat-
tern classification and information processing. Essentially, such a framework pro-
vides a natural way of dealing with problems in which the source of imprecision is
the absence of sharply defined criteria of class membership rather than the presence
of random variables.

In the fuzzy set theory, membership of an element in a set is described by
the membership function of the set. If U is the universe of discourse, and E is
a fuzzy subset of U, the membership function p:U—[0,1] assigns to every
element x in the set E its degree of membership pg(x). We write either (E,pg)
or E~ for that fuzzy set, to distinguish from the standard set notation E. The
membership function is a generalization of the characteristic function of an
ordinary set. Ordinary sets are termed crisp sets in fuzzy sets theory. They are
considered a special case—a fuzzy set is crisp if, and only if, its membership
function does not have fractional values.

On the basis of this definition, one then develops such concepts as set theo-
retic operations on fuzzy sets (union, intersection, etc.), as well as the notions
of fuzzy numbers, fuzzy relations, fuzzy arithmetic, and approximate reasoning
(known popularly as “fuzzy logic”). Pattern recognition, or the search for
structure in data, provided the early impetus for developing FST because of the
fundamental involvement of human perception (Dubois and Prade, 1980) and
the inadequacy of standard mathematics to deal with complex and ill-defined
systems (Bezdek and Pal, 1992). The formal development began with Zadeh
(1965) introducing the principal concepts of FST. A complete presentation of
FST is provided in Zimmerman (1991).

The first recognition of FST applicability to the problem of insurance under-
writing is due to DeWit (1982). Lemaire (1990) sets out a more extensive
agenda for FST in insurance theory, most notably in the financial aspects of
the business. Under the auspices of the Society of Actuaries, Ostaszewski
(1993) assembled a large number of possible applications of fuzzy set theory
in actuarial science. His presentation includes such areas as economics of risk,
time value of money, individual and collective models or risk, classification,
assumptions, conservatism, and adjustment. Cummins and Derrig (1993, 1994)
complement that work by exploring applications of fuzzy sets to property-
liability insurance forecasting and pricing problems.

Here, we present a method of fuzzy pattern recognition for risk and claims
classification. We apply fuzzy pattern recognition to two problems in Massa-
chusetts private passenger automobile insurance: defining rating territories and
classifying claims with regard to their suspected fraud content. Dubois and
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Prade (1980), Bezdek (1981), and Kandel (1982) provide overviews of fuzzy
techniques in pattern recognition. Zimmerman (1991) and Bezdek and Pal
(1992) provide other valuable references on the subject.

The concept of a fuzzy set and the mathematical algorithms needed to im-
plement classification using fuzzy techniques is described in the next section.
Grouping towns in Massachusetts into rating territories for risk classification
purposes is viewed as a fuzzy clustering problem because many towns can be
strongly related to two or more territories, thereby creating a border problem:
to which of several related territories should a town be assigned. We also
explore the influence of geographical proximity on the resulting fuzzy territo-
ries and classification of claims by their suspected fraudulent content. A final
section summarizes and provides some alternative and future directions for
FST in risk and claims classification problems.

Algorithms for Fuzzy Classification

Lemaire (1990) and Ostaszewski (1993) point out that insurance risk classi-
fication often resorts either to vague methods—as in the case of using multiple
ill-defined personal criteria to identify good risks to underwrite—or methods
that are excessively precise—as in the case of a person who fails to classify as
a preferred risk for life insurance application because his or her body weight
exceeds the stated limit by half a pound. Kandel (1982), writing from a differ-
ent perspective, says: “In a very fundamental way, the intimate relation be-
tween the theory of fuzzy sets and the theory of pattern recognition and classi-
fication rests on the fact that most real-world classes are fuzzy in nature.” This
is exactly the reason that we propose to utilize the methodology of fuzzy clus-
tering in territorial classification and to extend that method to classifying
claims for suspected fraud.

Kandel (1982) classifies various techniques of fuzzy pattern recognition.
Syntactic techniques apply when the pattern sought is related to the formal
structure of the language. Semantic techniques apply to those producing fuzzy
partitions of data sets. According to Bezdek and Pal (1992), the first choice
faced by a pattern recognition system designer is that of process description.
The designer may choose from among syntactic, numerical, contextual, rule-
based, hybrid, and fuzzy process descriptions. Feature analysis is the next
design step, in which data (generally given in the form of a data vector con-
taining information about the analyzed objects) may be subjected to prepro-
cessing, displays, and extraction. Next, semantic clustering algorithms, generat-
ing actual structures in data, are identified. Finally, the designer addresses
cluster validity and optimality.

We use a fuzzy pattern recognition technique given by Bezdek (1981). In
the classification of Bezdek and Pal (1992), it can be described as a numerical
process description, fuzzy c-means iterative semantic algorithm. Because the
data we analyze are in the form of numerical vectors (i.e., vectors in a euclide-
an space), with a number of clusters sought predetermined, we consider the
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fuzzy c-means technique most appropriate. Bezdek et al. (1987) discuss the
convergence properties of the algorithm.

The task is to divide n objects, where n is a natural number, each represent-
ed by a vector in a p-dimensional euclidean space

X1 Xpeees X

(coordinates of the vectors are known as features), into ¢, 2 < ¢ < n, categori-
cally homogeneous subsets called clusters. The objects belonging to the same
cluster should be similar, and the objects in different clusters should be as
dissimilar as possible. The number of clusters, c, is specified in advance. If the
membership function of objects in clusters takes on fractional values, then we
have fuzzy clusters. The process is called clustering.

Any clustering method must answer two fundamental questions: which
properties of the data set should be used, and in which way should they be
used to identify clusters. Once the algorithm meeting those two conditions is
specified, there are, of course, more technical questions, such as whether the
algorithm 1is effective for all possible sets of data, as well as the question of
validity of clusters (see Kandel, 1982, and Bezdek and Pal, 1992, for a discus-
sion of this problem).

Risk classification seeks to distinguish risks for the purposes of rating and
underwriting. In claims processing, the purpose is to identify claims suspected
of fraud for special processing and route nonsuspicious claims through normal
adjusting channels. Insurance risks and claims are both described here by cer-
tain data patterns. The pattern recognition algorithm does the “detective work”
of finding clusters of similar risks and claims.

Let the data set be

X = {X}, Xppees X, )
X is assumed to be a finite subset of a p-dimensional euclidean space RP. Each
X = Xy s X Xip) kK =1,2,3,..,n

is called a feature vector, while each Xy j» where j = 1, 2,..., p, is the jth feature
of the vector x,.

A partition of the data set X into fuzzy clusters is described by the set of
membership functions of the clusters (note that such a description could also
apply to crisp clusters, with the membership function meaning simply the
characteristic function). The clusters are denoted by S, S,...., S. with the corre-
sponding membership functions By By woos pSC.In other words, we will con-

struct ¢ clusters that are fuzzy sets.
A ¢ x n matrix containing the values of the membership functions of the
fuzzy clusters

U= [pSi(xk)]izl,Z,w,c; K=12,...n
is a fuzzy c-partition if it satisfies the following conditions:
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C

Y pg(x) =1 for each k = 1, 2,..., n, (D

i=1

0<)Y pg(x)<nforeachi=1,2,..c 2
k=1 !

Condition (1) says that each feature vector x, has its total membership value
of one divided among all clusters, and condition (2) states that the sum of
membership degrees of feature vectors in a given cluster does not exceed the
total number of feature vectors.

Given the above definition, let us now present the fuzzy c-means algorithm
of Bezdek (1981), also used in Ostaszewski (1993). The iterative algorithm
consists of four steps; we add a fifth step to make the result operational. The
first step sets out a working definition of distance between feature vectors (the
vector norm) and an initial starting partition. The second step identifies the
center of each cluster in the partition. The third step recalculates the member-
ship functions of the partition as normalized distances from the step 2 centers.
The fourth step checks the distance between successive partitions to determine
if the iteration procedure should be stopped. The fifth step discards small
membership values (below some predetermined o, 0 < o0 < 1) to make the
partition operational. The five formal steps follow.

Step 1

Choose ¢, an integer between two and n, as the number of clusters into
which the data is partitioned. Choose a positive parameter m, and a symmetric,
positive-definite p x p matrix G. Define the vector norm | |; , using the
transpose operator T, by

%, = vl = %, - V)" G, - v)

3

Z & (xkj - vil)z'

1=

P
j=1

P
1
Set the iteration counting parameter { equal to zero, and choose the initial
fuzzy partition

~ (0)

0" i)

lSiSc,lSkSn.
Choose a parameter € > 0 (this number will indicate when to stop the iteration
process).

Note that the columns of the fuzzy partition matrix, numbered one through
n, correspond to data vectors, and each column gives degrees of membership
of the data point in clusters one through c. The matrix norm | | is suitably
chosen in such a way that two data vectors with great similarities are relatively
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close to each other, while dissimilar data are set apart. Although no perfect
measure of such relationship exists, we can adjust the scale of x, coordinates
by introducing appropriate diagonal entries, and any known correlations of
coordinates can be represented in the nondiagonal entries. The size of the
matrix G corresponds to the number of coordinates in data vectors.

The main idea of the algorithm is to produce reasonable centers for clusters
of data, and then group data vectors around cluster centers which are reason-
ably close to them. Unlike in standard crisp algorithms, fractional cluster mem-
bership is allowed, which gives us flexibility to adjust for any otherwise desir-
able phenomena.

Step 2
Calculate the fuzzy cluster centers {v.?}._ given by the following formu-
i i 1,2.,.A,cg y g
la:
n ® m
_1 (BU(x)) X
vo = et ) % )
n m
X kr (1s700)
fori=1,2,..,c.

The cluster centers are merely weighted averages of data vectors. Weights
are given by the mth powers of the membership degree. Bezdek et al. (1987)
discuss the influence of the scaling factor m, as well as convergence of the
resulting algorithm.

Step 3

Calculate the new partition (i.e., membership matrix)

~ 0+

U = {Ps(.“”(xk)] ’
i 1<i<c,1<k<n
where
. Ix-v O
us(f 1)(Xk) ) \ XVl (5)

m-1

C
2

wherei=1, 2,....,c,and k=1, 2,..., n.

If x, = v®,however, formula (5) cannot be used. In that case, we set
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lifk =1
(0+1) = ’ 6
bg (X {0 ifk=i,i=1,2,..,c ©

This step of the algorithm carries us from the previous membership matrix
(numbered () to the next one (numbered ¢ + 1). One can interpret formula (5)
as follows: if the vector norm measures the similarity of two data vectors, the
(m-1)st root of its reciprocal is a form of measure of dissimilarity, and formula
(5) assigns a new membership degree by relating the dissimilarity with a given
cluster center to the “total dissimilarity present.” Formula (5) is, however, a
result of a longer optimization procedure discussed further by Bezdek et al.
(1987).

Step 4

By using the natural matrix norm, or the extension of | |5 to the matrix
norm, or by choosing a different matrix norm more suitable to the problem,
calculate

A= ot - T
If A > g, repeat steps 2, 3, and 4. Otherwise, stop at some iteration count {*.

This “stopping procedure” is a standard numerical analysis technique—if yet
another iteration does not change much, the result is the best possible. Clearly,
the procedure rests on the assumption of the algorithm’s convergence, but
luckily the proof of that convergence exists, by Bezdek et al. (1987).

G

Step 5

The final fuzzy matrix U “ is structured for operational use by means of the
normalized o-cut, for some 0 < o < 1. Quite simply, all membership function
values less than o are replaced with zero and the function is renormalized
(sums to one) to preserve partition condition (1). For small o, the resulting
partition is still fuzzy; for large o (or max-cuts, where the largest membership
value is set equal to one all others are zero), the resulting partitions are likely
to be crisp.

Automobile Rating Territories in Massachusetts

As Conger (1987) points out,

In Massachusetts, the past ten years have witnessed the evolution of an increasingly
sophisticated system of methodologies for determining the definitions of rating
territories for private passenger automobile insurance. In contrast to territory
schemes in other states, which tend to group geographically contiguous towns, these
Massachusetts methodologies have had as their goal the grouping of towns with
similar expected losses per exposure, regardless of the geographic contiguity or non-
contiguity of the grouped towns.
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Note the ambiguous nature of “similar expected losses,” a decidedly fuzzy
concept.

The methodology used for territorial rating results in a final combined five-
coverage pure premium index for each of the 360 towns (or, more precisely,
350 towns and ten areas into which Boston is divided for automobile rating
purposes). A complete description of the empirical Bayes procedure for deter-
mining the biennial individual and combined coverage town indices from four
years of data is given in DuMouchel (1983). The indices, which are numbers
relatively close to 1 representing expected losses in relation to those of the
entire state expected losses, are then ordered and territories are created by
partitioning that linear ordering.' Because frequent switches from one territory
to another are undesirable but inevitable, numerous restrictions on moving
towns from one territory to another exist in actual regulatory practice. Once
territory clusters are set for a rating year, five individual coverage rates are
determined using that single clustering, one which may or may not be appro-
priate for each coverage, but which is assumed to be equitable overall.

Such difficulties and imprecisions in groupings warrant an investigation of
fuzzy clustering. Resulting fuzzy clusters would be much more flexible, be-
cause a town belonging partially to two or more territories could be assigned
to one of them if regulatory limitations dictate unique assignments of towns to
territories. Although stability of territory assignment is desirable and conve-
nient, the system of clustering towns into territories should meet the standard
responsiveness criterion for risk classification. Towns have an incentive to
reduce their relative loss costs by maintaining their roads, safety engineering,
and law enforcement, if those actions bring about lower premiums. When the
system is not responsive, or slow to respond, the incentives can be diminished
or lost.

The pure premium indices are calculated for the following coverages for all
350 towns: bodily injury liability (A-1 and B), personal injury protection (A-
2), property damage liability (PDL), collision, comprehensive, and a sixth
category comprising the five individual coverages combined. We use those
values as the coordinates of vectors x,, k = 1, 2, 3,..., 350, representing the
towns in the data space. This implies that we treat the data space as six-dimen-
sional, as six parameters are used to describe towns. In our calculations, we
use either the five coverage indices (five-dimensional vectors) or the combined
index (one-dimensional vectors) but not both. The data for the 1993 indices
(based on the 1987 through 1990 data) for towns in Bristol County are given
in Appendix A. Data for all 350 towns and Boston are available in Automobile
Insurers Bureau (1992) or from the authors. We begin by illustrating the algo-
rithm for a manageable set of towns: the twenty towns of Bristol County,
Massachusetts.

"In general, the partitioning is accomplished by grouping towns within five to six percent
intervals on either side of the statewide average index of one.
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The Bristol County Algorithm
The initial clustering for Bristol County is the indicated 1993 territory as-

signment groupings relabeled one to five.> The initial five-coverage partition
matrix is
["’J(O) _ [ps(.O)(x )]
1

k b
1<i<5,1<k<20

where p/”(x,) represents the membership of town x, in cluster S;, and it
1

equals one if the town is in the territory, or zero if it is not.
We also set the stopping parameter € = 0.05, and m = 2. The initial cluster
centers are calculated as

X X
© = k=1 (psi ( k)) k (7)
' 20 2
Z ket (ps(im(xk))
fori=1, 2,..., 5. We proceed to evaluate the new partition matrix
go - [Ps(»l)(xk)] , 8)
! 1<i<5,1<k<20
where
1
5 on
Z -1 & ((xk) - (Vi( )>
n(x,) = J pl i ©)

5 1
X )
1 o0, - o)
> o1 & (0, — (v,
where the subscript p refers to one of the five pure premium coordinates of a

town,and i =1, 2,...., 5, k=1, 2,..., 20, and g, are weights representing the
distribution of losses across coverage.’

If x, = v©, however, formula (6) must be used. In that case, we set

2 For illustrative purposes, the town of Fairhaven, which was assigned to 1993 Territory 9, is
included with those towns in Territory 8. Fall River is included with New Bedford. Actual 1993
rating territories are subject to judgmental adjustments and capping and are not always those
shown here.

*The coverage weight distribution, using 1990 exposures times four-year pure premiums, is
[(g:) = (0.2229, 0.1109, 0.2048, 0.3210, 0.1404); (g) = 0if i = j, 1 < i, j < 5)].
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1if k

=1
ps(il) (Xk) = {0 if k #1i,

K =1, 2...20, i=1, 2.... 5.

Now we calculate the distance between the initial partition matrix U © and the

.. . ~ (1 . . .
new partition matrix 158 ), by taking the simple matrix norm

520
A - J 1) = 1O (1o
ES J J

If A < e = 0.05, the process is stopped. Otherwise, the iterative algorithm
continues. The results of the calculation, with an o-cut of 0.2, are presented in
Table 1.
Table 1
Fuzzy Town Cluster Membership Values
for Bristol County, Massachusetts

Membership Values

Initial
Town Name Cluster H, Hs, U, U, Ky, Sum
Mansfield 1 1 0 0 0 0 1
North Attleborough 1 1 0 0 0 0 1
Dighton 2 0.32 0.22 0.46 0 0 1
Rehoboth 2 0.40 0.23 0.38 0 0 1
Norton 2 0.58 0 0.42 0 0 1
Freetown 2 0 1 0 0 0 1
Berkley 2 0 1 0 0 0 1
Raynham 2 0 0 1 0 0 1
Seekonk 3 0.25 0 0.43 0.32 0 1
Easton 3 0 0 1 0 0 1
Attleboro 3 0 0 1 0 0 1
Dartmouth 3 0 0 1 0 0 1
Somerset 4 0 0 0 1 0 1
Swansea 4 0 0 0 1 0 1
Taunton 4 0 0 0.37 0.63 0 1
Westport 4 0 0.37 0.30 0.33 0 1
Acushnet 4 0 0 0 1 0 1
Fairhaven 4 0 0 0 1 0 1
Fall River 5 0 0 0 0 1 1
New Bedford 5 0 0 0 0 1 1
Sum 3.54 2.82 6.35 5.29 2 20

Note: C-means fuzzy clustering algorithm, with five-coverage data pattern, ninth iteration stopping
parameter 0.0499 < 0.05, a-cut = 0.2, no geographical variables.

Figures 1 and 2 display the results of the transition from initial territory
clusters to final fuzzy clusters. Figure 1 displays the 20 Bristol County towns
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Figure 1
Initial Territorial Town Clustering by Combined Index Territory
for Bristol County, Massachusetts
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Figure 2
Fuzzy Town Clustering by Five Coverage Indices
for Bristol County, Massachusetts
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grouped into their initial clusters in increasing combined index order. For
example, Town 1 (Mansfield) has the lowest combined index value (0.8018)
and is in the lowest ranked territory, while Town 20 (New Bedford) has the
highest index (1.2977) and is in the highest ranked territory.



