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The concepts of duration, convexity, and immunization are fundamental

tools of asset-liability management. This paper provides a theoretical and

practical overview of the concepts, largely missing in the existing literature

on the subject, and fills some holes in the body of research on the subject.
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underlying theory, which we believe to be of value in the new North American
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1 Introduction

The concepts of duration and convexity are commonly used in the

field of asset-liability management. They are important because they

provide key measures of sensitivity of the price of a financial instru-

ment to changes in interest rates and they help develop methodologies

in interest rate risk management. Traditional approaches used by finan-

cial intermediaries often allowed for borrowing at short-term interest

rates, relatively lower, and investing at longer-term interest rates, rela-

tively higher, hoping to earn substantial profits from the difference in

the level of the two interest rates. Interest rate risk management utiliz-

ing the concepts of duration and convexity helps point out the dangers

of such a simplistic approach and develops alternatives to it. Thus, the

thorough understanding of these two concepts must be an important

part of the education of today’s actuaries. In North America, the in-

troduction of the concepts of duration and convexity now occur fairly

early in the actuarial examination process. The new Society of Actuaries

examination system starting in May 2005 will introduce these concepts

in the new Financial Mathematics (FM) examination at the level of old

Course 2 Society of Actuaries examination. They also are presented in

the Society of Actuaries Course 6 examination, as well as Casualty Ac-

tuarial Society Examination 8, based on the more theoretical approach

of Panjer (1998) and the more practical ones of Fabozzi (2000) or Bodie,

Kane, and Marcus (2002).

There is a split in the way duration and convexity are generally pre-

sented in the finance and actuarial literature: from a theoretical per-

spective as rates of change or from a practical perspective as weighted

average time to maturity (for duration) or weighted average square of

time to maturity (for convexity). These two perspectives are naturally

connected, but the nature of connection are not explicitly discussed in

the educational actuarial literature.

The objective of this paper is to fill the existing void and give a gen-

eral overview of the two fundamental concepts. This paper is presented

at the level where it is accessible to students who have completed three

semesters of calculus and one or two semesters of probability, i.e., at

the level of the current Course P Society of Actuaries examination on

probability, and have a working knowledge of the theory of interest

as presented in the text by Kellison (1991). We hope that this paper

will allow future actuaries to combine the theoretical and the practical

approaches in their education and training.
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2 Duration

2.1 Duration as Derivatives

Duration is a measure of the sensitivity of a financial asset to changes

in interest rates. It is based on the assumption of using only one interest

rate, which commonly is interpreted as a flat yield curve assumption.

As a change in an interest rate amounts to a parallel shift in a flat yield

curve, use of duration also commonly is said to assume a parallel shift

in the yield curve.

For a given interest rate i, let δ denote the corresponding force of

interest, which satisfies δ = ln(1+i). Thus if P is the price of a financial

asset, we often write P as a function of the interest rate i as P(i) or as

a function of the force of interest δ, P(δ). This notation is necessitated

by the simultaneous use of the interest rate and the force of interest in

our presentation.

Definition 1. The duration of a security with price P is

D (P) = −1

P

dP

di
= − d

di
ln (P) . (1)

We should emphasize the following features of this definition: (i) it

makes no assumptions about the type or structure of the security; (ii) it

applies whether or not the cash flows of the security are dependent on

interest rates; (iii) it applies whether or not the security is risk-free; and

(iv) it applies whether or not the security contains interest rate options.

This definition applies to all securities, including bonds, mortgages,

options, stocks, swaps, interest-only strips, etc. Later in this paper we

will analyze this definition under some specific assumptions about the

security.

The term −dP/di usually is termed the dollar duration of the secu-

rity. We propose to abandon this term for a less restrictive one: mone-

tary duration, which we believe to be better because of lack of reference

to a specific national currency.

Because of the standard approximation of the derivative with a dif-

ference quotient, we see that for sufficiently small ∆i:

D (P) ≈ P (i−∆i)− P (i)
P (i)∆i

=
P (i−∆i)− P (i)

P (i)

∆i
. (2)

Equation (2) means that duration gives us the approximate ratio of the

percentage loss in the value of the security per unit of interest rates, a
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commonly used approximation. Note also that because the loss in the

value of the security [P (i−∆i)− P (i)]/P (i) is expressed as percent-

age and ∆i is in percent per year (if the interest rate used is annual, a

common standard), the unit for duration is a year (or, in general, the

time unit over which the interest rate is given).

Instead of defining duration in terms of the derivative with respect

to the interest rate, one could define duration with respect to the force

of interest as follows:

Definition 2. The Macaulay duration of a security with price P is

DM (P) = −1

P

dP

dδ
= − d

dδ
lnP. (3)

Clearly these two definitions of duration are connected because

dP

di
= dP

dδ

dδ

di
.

Hence it follows that

D (P) = 1

1+ iDM (P) . (4)

Suppose we haven securities, and let Dur (Pk) be either the duration

or Macaulay duration of the kth security whose price is Pk > 0, for

k = 1,2, . . . , n. If a security has price P > 0 that is a linear combination

of the prices of these n securities, i.e.,

P = b1P1 + b2P2 + · · · + bnPn (5)

where the bks are constants, then it follows directly from the definition

of duration or Macaulay duration that:

Dur (P) =
n∑

k=1

bk
Pk

P
Dur (Pk) . (6)

2.2 Duration as Weighted Averages

Let At denote the known non-zero cash flow at time t produced

by a security under consideration, and let T denote the set of future

time points at which the security’s cash flow occurs. For simplicity we

further assume that At does not depend on i. Throughout this paper

we say a security has deterministic cash flows when its cash flows do

not depend on the interest rate. At first, we will assume that the cash
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flows are discrete and that there is only one interest rate regardless of

maturity (i.e., the yield curve is flat).

Then the present value of the security, i.e., its price, is:

P =
∑

t∈T

At

(1+ i)t
. (7)

In this case, monetary duration is given by:

−dP

di
=
∑

t∈T

tAt

(1+ i)t+1 =
1

(1+ i)
∑

t∈T
t PV (At), (8)

where

PV (At) = At

(1+ i)t
is the present value of the cash flow At . The duration of this security

is therefore:

D (P) = 1

P

∑

t∈T

tAt

(1+ i)t+1 =
1

(1+ i)
∑

t∈T
t wt (9)

where wt is the weight function

wt = PV (At)/P. (10)

Thus duration turns out to be a weighted average time to maturity, mod-

ified by the factor 1/(1+ i). For this reason, the concept of duration

as introduced in equation (1) is commonly called modified duration for

securities with deterministic cash flows. For securities with cash flows

that are dependent on interest rates, which causes the cash flows to be

random in nature if interest rates are random, duration is most often

termed effective duration. For such securities, however, duration still

is defined as in equation (1).

The weighted average time to maturity concept is actually the orig-

inal idea of duration. For a security with deterministic cash flows,

Macaulay (1938) defined duration as

DM (P) = 1

P

∑

t∈T

tAt

(1+ i)t
=
∑

t∈T
t wt . (11)

If the weightswt are positive, we can introduce a discrete random vari-

able T with probability distribution with P (T = t) = wt . It then be-

comes clear from equation (11) that the Macaulay duration is the ex-

pected value of T for this probability distribution, i.e., DM (P) = E (T).
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We quickly can see from equation (11) that the duration of a single

payment at a future time t is t/(1+ i) and its Macaulay duration is t.

2.3 Duration Using Nominal Rates

Duration can be calculated with respect to nominal interest rates,

such as semi-annual rates (i(2)), quarterly rates (i(4)), or (i(12)). Recall

the definition of a nominal rate, i(m), as given in Kellison (1991):

(
1+ i

(m)

m

)m
= (1+ j)m = 1+ i = eδ

where j = i(m)/m. Therefore

di

di(m)
=
(

1+ i
(m)

m

)m−1

= 1+ i
1+ i(m)

m

(12)

and

dδ

di(m)
= dδ

di
· di

di(m)
= 1

1+ i(m)

m

. (13)

The definition of duration with respect to i(m) is

D(m) (P) = −1

P

dP

di(m)
. (14)

It is easy to prove that

D(m) = 1+ i
1+ i(m)

m

D = 1

1+ i(m)

m

DM . (15)

It is not common to consider the case of continuous stream of pay-

ments for calculation of duration, because such securities do not exist

in reality. We briefly consider such hypothetical securities for purely

theoretical purposes. Suppose a security has continuous cash flows of

Atdt in (t, t + dt), with a constant force of interest δ. The security’s

price, P , is given by

P (δ) =
∞∫

0

e−tδAtdt (16)

assuming the integral exists. Its Macaulay duration is:
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DM (P (δ)) = −P
′ (δ)
P (δ)

=

∞∫
0

te−tδAtdt

∞∫
0

e−tδAtdt
. (17)

2.4 Some Examples

Thus far we have assumed that the security’s cash flows do not de-

pend on the interest rate. What if there is such dependence? We will

now consider a few examples of such securities.

Example 1. Consider a discrete security paying a cash flow At = etδ
at a single time t. Its price (present value) is P = 1. As −dP/dδ = 0,
and the duration of this security is zero. From equation (6), any linear

combination of instruments like this, paying the accumulated value of

a monetary unit at a given interest rate, also will have duration of zero.

Example 2. Similarly, if a discrete security with a single cash flow of

At = e(t−1)δ at time t, its price is P = e−δ and duration of 1.

These two examples illustrate the well-known fact that floating rate

securities1 indexed to a short term rate (i.e., rate that resets somewhere

between times 0 and 1 year) have durations between 0 and 1. By using

the same argument, one can show that the duration of a floating rate

security that resets every n-years and with no restrictions on the level

of the new rate after reset (so that the new rate can fully adjust to the

market level of the interest rates) is the same as the duration on an

otherwise identical n-year bond.

Example 3. Consider a security that is ann-year certain annuity-immediate

with level payments of 1/mmadem times per year forn years, i.e., pay-

ments are made at times 1/m, 2/m, …,(nm− 1)/m. Assuming a con-

stant interest rate to maturity of i, the price of this security is P = a(m)
n| i .

It follows that the Macaulay duration of this security is:

DM

(
a
(m)

n| i

)
= 1

a
(m)

n| i

nm∑

k=1

k

m
· 1

m
· (1+ i)− k

m

= 1

d(m)
− n(
(1+ i)n − 1

) , (18)

1Floating rate securities are securities whose coupons reset, i.e., change in a manner
consistent with the market level of interest rates.
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where d(m) = 1− (1+ i)− 1
m .

Example 4. On the other hand, if the security under consideration is a

continuous annuity paid for n years, then its price is P = ān| i and its

Macaulay duration is

DM
(
ān| i

)
= 1

δ
− n

enδ − 1
. (19)

The price and duration follow directly from those in example 3 above

by letting m →∞ in a
(m)

n| i and in equation (18).

Note that the second terms in (18) and in (19) are identical. When

n → ∞, the limit is 1/d(m), which is the price of a discrete perpetuity-

immediate, and 1/δ, which is the price of a continuous perpetuity. Note

that the duration of a continuous perpetuity is its price.

Example 5. What would be the Macaulay duration of a perpetuity-due?

As every payment of such a perpetuity arrives exactly an mth of a

year before the corresponding payment of a perpetuity-immediate, its

Macaulay duration is

1

d(m)
− 1

m
= 1

i(m)
.

Thus the Macaulay duration of a perpetuity-due is the price of the

corresponding perpetuity-immediate, while the Macaulay duration of a

perpetuity-immediate is the price of the corresponding perpetuity-due.

Example 6. Finally, consider a security that is a risk-free bond with

principal value of one dollar, maturing n years from now, paying an

equal coupon of r (m)/m per unit of principal value m times a year at

the end of eachmth of a year, with i(m) being the nominal annual yield

interest rate compoundedm times a year at the time of bond issue and

i being the annual effective interest rate. The price of this bond is

P = r (m)a(m)
n| i + (1+ i)

−n

and its Macaulay duration, calculated here as a weighted-average time

to maturity as in equation (11), is:
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DM (P) = 1

P



nm∑

k=1

(
k

m
· r

(m)

m
· (1+ i)− k

m

)
+n · (1+ i)−n




= 1

P

[
r (m) (Ia)

(m)

n| i +n(1+ i)
−n
]

= 1

P

[
r (m)

i(m)
ä
(m)

n| i +
(
r (m)

i(m)
− 1

)
n(1+ i)−n

]
. (20)

If the bond is currently trading at par then r (m) = i(m) so that the price

of the bond is P = 1 and its Macaulay duration reduces to

DM (P) = ä(m)n| i . (21)

2.5 Effective Duration

In the above examples there was a direct functional relationship be-

tween the cash flows and interest rate. In practice, however, securities

have complex relationships between cash flows and interest rates, and

one cannot generally write a direct functional relationship between the

cash flows and interest rate. In such cases duration is usually estimated

rather than directly calculated.

The standard approximation approach is to use the Taylor series

expansion of the price as a function of interest rate:

P (i+∆i) = P (i)+ dP

di
∆i+ 1

2

d2P

di2
(∆i)

2 + · · · (22)

Ignoring terms involving (∆i)
2

and higher yields

−dP

di

1

P
≈ P (i)− P (i+∆i)

(∆i) P (i)
(23)

and

−dP

di

1

P
≈ P (i−∆i)− P (i)

(∆i) P (i)
. (24)

We obtain a commonly used approximation of duration by averaging

the right side of equations (23) and (24) yields

DE(P) ≈ P (i−∆i)− P (i+∆i)
2P (i) (∆i)

. (25)
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Because this approximation can deal with any interest rate and/or any

default options embedded in the security, DE(P) is often called an

option-adjusted duration or effective duration.

3 Convexity

For any security with price P , the quantity:

C (P) = 1

P

d2P

di2
(26)

is called the convexity of the security, and

CM (P) = 1

P

d2P

dδ2
(27)

is called the Macaulay convexity of the security. As PDM (P) = −dP/dδ,

the monetary duration of the security, we also have:

CM (P) = −1

P

d

dδ
(P ·DM (P)) = D2

M (P)−
dDM (P)

dδ
. (28)

The quantity

M2 (P) = d
2 (ln (P))

di2
= −dD (P)

di
(29)

is called the M-squared of the security, while

M2
M (P) =

d2 (lnP)

dδ2
= −dDM (P)

dδ
= CM (P)−D2

M (P) (30)

will be termed the Macaulay M-squared.

For a security with discrete deterministic cash flows so that P =∑
t∈T Ate−δt , we have

CM (P) = 1

P

∑

t∈T
t2e−δtAt

=
∑

t∈T
t2wt (31)
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where wt is defined in equation (10),

M2
M (P) =

1

P

∑

t∈T
(t −DM (P))2e−δtAt

=
∑

t∈T
wt (t −DM (P))2, (32)

and

dM2
M (P)

dδ
= −1

P

∑

t∈T
(t −DM (P))3e−δtAt

= −
∑

t∈T
wt (t −DM (P))3 . (33)

Similar expressions can be developed forC (P),M2 (P), anddM2 (P)/di.
Equation (32) allows for a relatively simple and intuitive interpreta-

tion of Macaulay duration, Macaulay convexity, and MacaulayM-squared

of a deterministic security. As we stated before, assuming cash flows

are positive, Macaulay duration is the expected time to cash flow with

respect to the probability distribution whose probability function (or

probability density function, in the case of continuous payments) is

fT (t) = wt . Macaulay convexity is the second moment of this random

variable, and Macaulay M-squared is the variance of it. This means

that Macaulay duration can be interpreted intuitively as the expected

time until maturity of cash flows of a security, Macaulay M-squared is

the measure of dispersion of the cash flows of the said security, and

Macaulay convexity is a sum of Macaulay M-squared and the square of

Macaulay duration.

By the chain rule of calculus,

dP

di
= 1

(1+ i)
dP

dδ
(34)

and

d2P

di2
= d

di

(
1

1+ i
dP

dδ

)

= − 1

(1+ i)2
dP

dδ
+ 1

(1+ i)2
d2P

dδ2
, (35)

which means that

C = 1

(1+ i)2
DM + 1

(1+ i)2
CM . (36)
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For M2 = C −D2, we easily can prove that

M2 = 1

(1+ i)2
CM + 1

(1+ i)2
DM − 1

(1+ i)2
D2
M

= 1

(1+ i)2
M2
M +

1

(1+ i)2
DM . (37)

For a security with discrete deterministic cash flows At (at time t) and

price P given in equation (7), then

C = 1

(1+ i)2
∑

t≥0

t (t + 1)wt = 1

(1+ i)2
CM + 1

(1+ i)2
DM . (38)

If this security consists of a single payment at time t, then its Macaulay

convexity is t2 and its convexity is

C = t2

(1+ i)2
+ t

(1+ i)2
= t (t + 1)

(1+ i)2
, (39)

its M2
M is 0, and its M2 is t/ (1+ i)2 .

Again, we suppose there are n securities. This time, however, we

let Conv (Pk) be either the convexity or Macaulay convexity of the kth

security whose price is Pk > 0, for k = 1,2, . . . , n. If a security has price

P > 0 given by equation (5), where the bks are constants, then it follows

directly from the definition of convexity or Macaulay convexity that:

Conv (P) =
n∑

k=1

bk
Pk

P
Conv (Pk) . (40)

If a security has embedded options (such as direct interest rate op-

tions, prepayment option, or the option to default), then the only prac-

tical calculation of convexity is as an approximation. Using the Taylor

series expansion of equation (22) and ignoring terms in powers of (∆i)3

and higher yields

P (i+∆i)− P (i) ≈ dP

di
∆i+ 1

2

d2P

di2
(∆i)

2

P (i−∆i)− P (i) ≈ dP

di
(−∆i)+ 1

2

d2P

di2
(−∆i)2

which are summed to give the following approximation to
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d2P

di2
(∆i)

2 ≈ P (i−∆i)− 2P (i)+ P (i+∆i) .
It follows that

C = d
2P

di2
1

P
≈ P (i−∆i)− 2P (i)+ P (i+∆i)

P (i) (∆i)
2 , (41)

which is a popular approximation to C that is used for securities with

interest sensitive cash flows.

For nominal interest rates, the convexity measure with respect to

i(m) is based on the following result:

d2P

d
(
i(m)

)2 =
d

di(m)

(
dP

di(m)

)
= d

di(m)


 1

1+ i(m)

m

dP

dδ




= 1(
1+ i(m)

m

)2

d2P

dδ2
+ 1(

1+ i(m)

m

)2

1

m

(
−dP

dδ

)
.

Therefore, convexity with respect to i(m), C(m), is

C(m) = 1(
1+ i(m)

m

)2CM +
1(

1+ i(m)

m

)2

1

m
DM . (42)

It is worthwhile to note that form →∞, equation (42) becomes equation

(36). Form = 1, the right side of equation (42) reduces to CM , indicating

consistency in both boundary cases.

Let us illustrate the concepts of duration and convexity with a simple

example.

Example 7. Consider a bond whose current price is 105 and whose

derivative with respect to the yield to maturity is -525. The yield to

maturity is an annual effective interest rate of 6%. Then the duration of

the bond is:

−1

P
· dP
di

= − 1

105
× (−525) = 5.

Because the effective measure of duration is equal to the Macaulay du-

ration divided by 1+ i, we also can calculate the Macaulay duration of

this bond as 5× 1.06 = 5.30. Now suppose that for the same bond, the

second derivative of the price with respect to the interest rate is 6720.

Then its convexity is:

1

P
· d

2P

di2
= 1

105
× 6720 = 64.
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4 Classical Immunization

Assume that a financial intermediary has assets, A(i), and liabilities,

L(i), that depend on the interest rates. Then the surplus, or capital, of

the intermediary, S(i), is defined as

S (i) = A(i)− L (i) .
Though in practice the surplus value may be established not by the

market, but by the regulatory or accounting principles, it is important

that managers of a financial intermediary understand the relationship

of surplus value (market value) to interest rate changes.

Redington (1952) proposed an integrated treatment of assets and lia-

bilities through the study of the surplus function S (i). Suppose the ob-

jective of the financial intermediary is to prevent the surplus level from

changing solely due to interest rate changes. One possible approach to

achieving this objective is to structure the assets and liabilities so that

the change in the value of S to be close to zero for infinitesimal changes

in interest rates, i.e., to have ∆S ≈ 0 for ∆i ≈ 0. This implies that the

financial intermediary must set

dS

di
= dA

di
− dL

di
= 0, (43)

i.e., the monetary duration of assets must be equal to the monetary

duration of liabilities. If, additionally, the financial intermediary wants

to ensure that slight interest rate changes yield an increase in the level

of its surplus, the following condition must hold:

d2S

di2
> 0, (44)

i.e., the surplus is a convex function of the interest rate. This convexity

can be achieved by having assets of greater monetary convexity than

that of liabilities.

Suppose, instead, the intermediary was more concerned with pro-

tecting the ratio of its assets to liabilities, rather than protecting the

actual surplus level.2 In such a case, the intermediary would be inter-

ested in setting the derivative with respect to the interest rate of the

ratio of assets and liabilities to zero, while keeping its second deriva-

tive positive. As the natural logarithm is a strictly increasing function,

however, we can transform this ratio as follows:

2This may be a result of the common regulatory concern with capital ratio (i.e., ratio
of surplus to assets) or management’s desire to control risk by monitoring the capital
ratio.
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R (i) = ln

(
A(i)

L (i)

)
.

To protect the surplus ratio level, we set dR/di = 0, i.e.,

d ln(A(i))

di
= d ln(L(i))

di
, (45)

or, equivalently, set the duration of assets equal to the duration of lia-

bilities and simultaneously set d2R/di2 > 0, i.e.,

d2 ln(A(i))

di2
>
d2 ln(L(i))

di2
, (46)

i.e., ensure that the M2 for the assets is greater than the M2 for the

liabilities. When durations of assets and liabilities are equal, greater

M2 is equivalent to greater convexity, so this condition can be restated

as convexity of assets exceeding convexity of liabilities. The approach

of equations (45) and (46) is the most common form of classical im-

munization and is considered to be the standard for applications of

immunization.

We should note that classical immunization has many critics, includ-

ing the present authors, because it violates the no-arbitrage principle of

pricing capital assets (Gajek and Ostaszewski, 2002, 2004; Ostaszewski,

2002; and Ostaszewski and Zwiesler, 2002, as well as Panjer, 1998,

Chapter 3). The more commonly quoted criticisms of classical immu-

nization include the following:

• Immunization assumes one interest rate, i.e., flat yield curve, which

only moves in parallel shifts;

• Immunization assumes only instantaneous infinitely small change

in the yield curve, and, of course, such changes are not usually

experienced in practice; and

• Immunization requires continuous costly rebalancing due to the

continuous changes in the underlying values of the assets and

liabilities that result in changes in durations and convexities.

Interestingly, many problems with immunization can be avoided

with relatively small modification of the idea. Instead of trying to un-

realistically assure that ∆S = S (i+∆i) − S (i) is always nonnegative,

one can instead try to bound ∆S from below by a (possibly negative)

quantity that can be made as large as possible via a proper choice of

the asset portfolio. We will briefly outline this approach. Note that
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∆S = S (i+∆i)− S (i) =
∑

t>0

St

(1+ i)t
(

(1+ i)t
(1+ i+∆i)t

− 1

)
, (47)

where St is the net surplus cash flow at time t. Hence, by the Schwartz

Inequality, we have:

∆S ≥ −

∑

t>0

S2
t

(1+ i)2t




1
2

∑

t>0

(
(1+ i)t

(1+ i+∆i)t
− 1

)2



1
2

. (48)

Therefore, the change in surplus value is bounded from below by

a product of two quantities: the first one depending on the portfolio

structure, and the second one depending only on the change in the

interest rate. It is clear from (48) that ∆S might be negative, but if we

find a way to decrease the quantity:

∑

t>0

S2
t

(1+ i)2t
,

which can be termed the immunization risk measure, then we can re-

duce the risk of decline in surplus value, at least in the worst case sce-

nario. This approach is analyzed in detail by Gajek and Ostaszewski

(2004).

Suppose that your company is planning to fund a liability of $1 mil-

lion to be paid in five years. Assume that the current yield on bonds of

all maturities is 4%. Your company can invest in a one-year zero-coupon

bond or a ten-year zero-coupon bond to fund this liability. Find the

amounts of the two bonds that should be purchased in order to match

the duration of the liability. Will such duration-matched portfolio im-

munize the liability?

The present value of the liability is:

1000000

1.045
≈ 821927.11.

The Macaulay duration of the liability is five. Its duration is

5

1.04
≈ 4.76190476.

Let us write w for the portion of the asset portfolio invested in the

one-year zero-coupon bond. Then 1−w is the portion invested in the

ten-year zero-coupon bond. The duration of the asset portfolio is the

weighted average of durations of those two zero-coupon bonds, i.e.,
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1

1.04
×w + 10

1.04
× (1−w) = 10

1.04
− 9w

1.04
.

In order to match the duration of the liability, we must have

10

1.04
− 9w

1.04
= 5

1.04
.

Therefore, 9w = 5, and

w = 5

9
≈ 55.56%.

In order to match durations, we must invest 55.56% of the portfolio in

the one-year zero-coupon bond and 45.44% in the ten-year zero-coupon

bond.

Immunization requires that the asset portfolio has convexity in ex-

cess of that of the liability. The convexity of the liability is:

5× 6

1.042
≈ 27.7366864.

The convexity of the asset portfolio is:

5

9
× 1× 2

1.042
+ 4

9
× 10× 11

1.042
≈ 46.2278107.

Therefore, the asset portfolio has convexity in excess of that of the

liability, and the portfolio is immunized.

5 Yield Curve and Multivariate Immunization

5.1 The Yield Curve

So far we have assumed the same interest rate for discounting cash

flows for all maturities. In practice, however, the rates used for dis-

counting cash flows for various maturities differ. This can be seen

by comparing the actual interest rates for pure discount bonds, also

known as zero coupon bonds, i.e., bonds that make only one payment

at maturity, and no intermediate coupon payments. These bonds are

discounted at different rates that depend on their remaining term to

maturity.

The yield curve or term structure of interest rates is the pattern of

interest rates for discounting cash flows of different maturities. The

specific functional relationship between the time of maturity and the

corresponding interest rate is usually called the yield curve, especially
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when represented graphically, while term structure of interest rates is

the general description of the phenomenon of rates varying for different

maturities. When longer term bonds offer higher yield to maturity rates

than shorter term bonds (as is usually the case in practice) the pattern of

yield rates is termed an upward sloping yield curve. If yield to maturity

rates are the same for all maturities, we call this pattern a flat yield

curve. Finally, a rare, but sometimes occurring, situation when longer

term yield to maturity rates are lower than shorter-term ones, is termed

an inverted yield curve.

When practitioners estimate the yield curve, they begin with the

yield rates of bonds that are perceived to be risk-free. In the United

States, the most common bonds utilized as risk-free bonds are those is-

sued by the federal government, i.e., United States Treasury Bills (those

with maturities up to a year), Treasury Notes (those with maturities be-

tween one and ten years), and Treasury Bonds (those with maturities of

ten years or more). But this explanation does not make it clear what in-

terest rate is used in the yield curve for each maturity. There are three

ways to define the yield curve (and term structure of interest rates):

1. Assign to each term to maturity the yield rate of a risk-free bond

with that term to maturity and trading at par, i.e., trading at its

redemption value. The resulting yield curve is termed the bond

yield curve;

2. Assign to each maturity the yield rate on a risk-free zero-coupon

bond of that maturity. This yield curve is called the spot curve,

and the interest rates given by it are called spot rates; and

3. Use the short-term interest rates in future time periods implied

by current bond spot rates.

Let us explain the concepts of short-term interest rates and forward

rates. A short-term interest rate (or short rate) refers to an interest

rate applicable for a short period of time, up to one year, including the

possibility of an instantaneous rate over the next infinitesimal period

of time. A spot interest rate (or spot rate) for maturity n periods, sn,

is an interest rate payable on a loan of maturity n periods that starts

immediately and accumulates interest to maturity, , n = 1,2, . . .. A

single period forward interest rate (or forward rate), ft , is an interest

rate payable on a future loan that commences at time t until time t+1,

t = 0,1,2, . . ..
If we use the one-year rate as the short rate for the purpose of de-

riving forward rates, we have the following relationship:
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(1+ sn)n = (1+ f0) (1+ f1) . . . (1+ fn−1) . (49)

We also have

1+ fn−1 = (1+ sn)n
(1+ sn−1)

n−1 . (50)

The yield curve also can be studied for the continuously compounded

interest rate, i.e., for the force of interest, δt , which is expressed as a

function of time.

The distinction between the spot rate and the forward rate is best

explained by presenting their mathematical relationship. If δt is the

spot force of interest for time t andϕt is the forward force of interest at

time t, then the accumulated value at time t of a monetary unit invested

at time 0 is:

(
eδt
)t = e

t∫
0

ϕsds
. (51)

Therefore we have

δt = 1

t

t∫

0

ϕsds,

i.e., the spot rate for time t is the mean value of the forward rates

between times 0 and t. By the fundamental theorem of calculus,

ϕt = tdδt

dt
+ δt . (52)

This shows us that ϕt > δt if and only if dδt/dt > 0.

We will illustrate the use of spot and forward rates with a simple

example. Suppose a 4%, 1000 par, annual coupon bond with a four-

year maturity exists in a market in which the spot rates are:

• 1 year spot rate is s1 = 3.0%,

• 2 year spot rate is s2 = 3.5%,

• 3 year spot rate is s3 = 4.0%,

• 4 year spot rate is s4 = 4.5%.

Then the value of this bond is the present value of its cash flows

discounted using the spot rates:
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40

1.03
+ 40

1.0352
+ 40

1.043
+ 1040

1.0454
≈ 983.84.

For the same date, we also can calculate the corresponding one-year

forward rates at times 0, 1, 2, 3 (i.e., from time 0 to time 1, from time 1

to time 2, from time 2 to time 3, and from time 3 to time 4) as follows:

• The forward rate from time 0 to time 1 is f1 = 3.0%, same as the

one year spot rate.

• The forward rate from time 1 to time 2, denoted by f2, is derived

from the condition

(1+ 0.03) (1+ f2) = 1.0352,

so that

1+ f2 = 1.0352

1.03
≈ 1.04002427,

and

f2 ≈ 4.002427%.

• The forward rate from time 2 to time 3, denoted by f3, is derived

from the condition

(1+ s2)2 (1+ f3) = 1.0352 × (1+ f3) = 1.043,

so that

1+ f3 = 1.043

1.0352
,

and

f3 ≈ 5.007258%.

• The forward rate from time 3 to time 4, denoted by f4, is derived

from the condition

(1+ s3)3 (1+ f4) = 1.043 × (1+ f4) = 1.0454,

so that

1+ f4 = 1.0454

1.043
,

and

f4 ≈ 6.014469%.
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5.2 Multivariate Immunization

To address some of the weaknesses of classical immunization, Ho

(1990) and Reitano (1991a, 1991b) developed a multivariate generaliza-

tion of duration and convexity. They replaced the single interest rate

parameter i by a yield curve vector ~i = (i1, ..., in), where the coordi-

nates of the yield curve vector correspond to certain set of key rates.

Reitano (1991a) wrote: “For example, one might base a yield curve on

observed market yields at maturities of 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 20

and 30 years.” The price function is then P(i1, ..., in). Instead of ana-

lyzing derivatives with respect to one interest rate variable, one could

use multivariate calculus tools to study the price function.

There is one objection that could be raised with respect to this ap-

proach. For example, when analyzing a deterministic function of sev-

eral variables f(x1, x2, . . . , xn), it is implicitly assumed that the vari-

ables xj and xk are mutually independent, i.e., ∂xj/∂xk = 0. This is

definitely not the case when various maturity interest rates are con-

sidered. Nevertheless, one can study such multivariate models for the

purpose of better understanding their properties.

The quantities ∂ lnP/∂ik are termed partial durations (Reitano, 1991a,

1991b) or key-rate durations (Ho, 1990). The total duration vector is:

−P
′(i1, ..., in)
P(i1, ..., in)

= − 1

P(i1, ..., in)

(
∂P

∂i1
, ...,

∂P

∂in

)
. (53)

One also can introduce the standard notion of directional derivative of

P(i1, ..., in) in the direction of a vector ~v = (v1, ..., vn):

P ′~v(i1, ..., in) = ~v •
(
∂P

∂i1
, . . . ,

∂P

∂in

)
(54)

where the “•” refers to the dot product of the vectors. The second

derivative matrix also can be used to define the total convexity:

P ′′(i1, ..., in)
P(i1, ..., in)

= 1

P(i1, ..., in)

[
∂2P

∂ik∂il

]

1≤k,l≤n
. (55)

One now can view the surplus of an insurance firm as a function of the

set of key interest rates chosen. Applying multivariate calculus, we can

obtain the two immunization algorithms that are directly analogous to

the one-dimensional case:

• To protect the absolute surplus level, set the first derivative (gra-

dient) of the surplus function to zero, i.e.,
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S′(i1, ..., in) = ~0, or, equivalently A′(i1, ..., in) = L′(i1, ..., in)
(56)

where
−→
0 is the zero vector, with all its components being zero and

with the symbols A, L referring to assets and liabilities, respec-

tively. In addition we must make the second derivative matrix,

S′′(i1, ..., in), positive definite.

• To protect the relative surplus level (i.e., surplus ratio), set:

−A
′(i1, ..., in)
A(i1, ..., in)

= −L
′(i1, ..., in)
L(i1, ..., in)

(57)

and make the total convexity matrix positive definite.

It should be noted (Panjer, 1998, Chapter 3) that key-rate immu-

nization with respect to a large number of key-rates, large enough to be

effectively exhaustive of all possible rates determining the yield curve,

forces the immunized portfolio toward an exact cash flow match for the

corresponding liabilities. While such cash flow matching does provide

complete protection against interest rate risk, it is generally more ex-

pensive than an immunizing portfolio; if cash flow matching were our

objective, this entire analysis would have been unnecessary.

6 Closing Comments

Duration, convexity, and immunization too often are taught in a

simplified or even simplistic way and from a perspective somewhat con-

flicting with that of actuarial practice. We hope that this primer will be

a useful tool for practicing actuaries, and others interested in measures

of sensitivity with respect to interest rates.

This paper covers some of the material currently included in the

Financial Mathematics examination in the new actuarial education sys-

tem in North America effective in 2005, and we hope that our work can

be of value to candidates studying for that examination.
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